

Savitribai Phule Pune University

T. Y. B. B. A. (C. A.) Semester-VI

(CBCS 2019 Pattern)

Advanced Java, Android / Dot Net Framework

 CA-606: Lab Book

Student Name: __

College Name: __

Roll No.: _____________ Division: ____________ Seat No: ____________

Academic Year: ________________________________

CERTIFICATE

This is to certify that Mr./Ms._______________________________

Seat Number ___________ of T.Y.B.B.A. (C.A) Sem-VI has successfully completed Laboratory

course (Advanced Java, Android/ Dot Net Framework in the year ____________________. He /

She has scored _____mark out of 10 (For Lab Book).

Subject Teacher H.O.D./Coordinator

Internal Examiner External Examiner

Editorial Board: Dr. D. Y. Patil ACS College, Pimpri, Pune

Section-I: Advanced Java

Mr. Satyavan M Kunjir Dr. D Y Patil ACS College Pimpri, Pune

Section-II: Android

Dr. Sonali Nemade Dr. D. Y. Patil ACS College Pimpri, Pune

Mr. Satish Mulgi Dr. D Y Patil ACS College Pimpri, Pune

Section-II: Dot Net Framework

Dr. Vikas N. Mahandule MAEER’s MIT Arts Commerce & Science College, Alandi (D.),

Pune

Mr. Satyavan M Kunjir Dr. D. Y. Patil ACS College Pimpri, Pune

Mrs. Vidya S. Chandgude MAEER’s MIT Arts Commerce & Science College, Alandi (D.),

Pune

Mr. Prashant C. Deshmukh Anantrao Thopte College Bhor, Pune

Section III: RIT Assignments

Section IV: Soft Skill Assignments

Reviewed By:

Dr. Ranjit Patil Principal, Dr. D. Y. Patil ACS College Pimpri, Pune

Dr. Sujata Patil Dr. D Y Patil ACS College Pimpri, Pune

Mr. S.G. Lakhdive R.M. College Akurdi

Introduction

1. About the work book:

This workbook is intended to be used by T.Y.B.B.A. (C.A.) Semester-VI students for

Advanced java, Android and Dot Net Framework Practical assignments. This

workbook is designed by considering all the practical topics mentioned in syllabus.

2. The objectives of this workbook are:

 Defining the scope of the course.

 To bring the uniformity in the practical conduction and implementation in all

colleges affiliated to SPPU.

 To have continuous assessment of the course and students.

 Providing ready reference for the students during practical implementation.

 Provide more options to students so that they can have good practice before facing

the examination.

 Catering to the demand of slow and fast learners and accordingly providing the

practice assignments to them.

3. How to use this workbook:

The workbook is divided into four sections. Section-I is related to Advanced Java

assignments, Section-II is related to Android or DotNet Framework assignments,

Section III is related with RIT assignments and Section IV is related with Soft skill

Assignments .

Section-I: Advanced java is divided into five assignments.

Section-II: Android is divided into six assignments.

 OR
Section-II: Dot Net Framework is divided into five assignments.

Section III: RIT Assignments

Section IV: Soft skill Assignments

 Students have to perform practical assignments of selected elective subject from

Section-II.

Each assignment of all sections has three SETs-A, B and C. It is mandatory for

students to complete SET A and SET B in lab. It also includes practice set which are

expected to be solved by students as home assignments and to be evaluated by subject

teachers.

4. Instructions to the students:
Please read the following instructions carefully and follow them during practical.

 Students are expected to carry this workbook every time they come to the lab for

computer practical.

 Students should prepare for the assignment by reading the relevant material which is

mentioned in ready reference and the concepts taught in class.

 Instructor will specify which problems to solve in the lab during the allotted slot and

student should complete them and get verified by the instructor. However, student

should spend additional hours in Lab and at home to cover all workbook assignments

if needed.

 Students will be assessed for each exercise on a scale from 0 to 5.

Not Done 0

Incomplete 1

Late Complete 2

Needs improvement 3

Complete 4

Well Done 5

5. Instruction to the Instructors:

Make sure that students should follow above instructions.

 Explain the assignment and related concepts in around ten minutes using

whiteboard if required or by demonstrating the software.

 Evaluate each assignment carried out by a student on a scale of 5 as specified

above by ticking appropriate box.

 The value should also be entered on assignment completion page of the

respective Lab course.

6. Instructions to the Lab administrator:

You have to ensure appropriate hardware and software is made available to each

student.

The operating system and software requirements on server side and also client side

are as given below:

 Operating System - Windows

 jdk 1.7 onwards. Tomcat 7.0 onwards

 Android

 Dot Net Framework

Assignment Completion Sheet

Section-I: Advanced Java

Sr.

No.

Assignment Name Marks

(out of 5)

Teacher’s

Sign

1 JDBC Programming

2 Multithreading

3 Socket Programming

4 JSP and Servlet

5 Spring and Hibernate

Total (Out of 25)

Total (Out of 5)

Instructor Signature:

Section-II: Android

Sr.

No.

Assignment Name Marks

(out of 5)

Teacher’s

Sign

1 Introduction to Android

2 Activity, Layout and Intent

3 Android User Interface and Event Handling

4 Android TimePicker, DatePicker, Alert Dailog

5 Android Adapter and Menu

6 Android Threads and Services

7 Android Databases – Sqlite

8 Location-Based Services and Google Maps

Total (Out of 40)

Total (Out of 5)

‘OR’

Section-II: Dot Net Framework

Sr.

No.

Assignment Name Marks

(out of 5)

Teacher’s

Sign

1 DOT NET FRAMEWORK

2 VB.Net

3 C#.Net

4 ASP.Net

5 ADO.Net

Total (Out of 25)

Total (Out of 5)

Instructor Signature:

Section – I

Advanced Java

Assignment No. 1: Introduction to JDBC

Introduction:

It is technique used to connect java application either with DSN or Database. For JDBC

application java.sql.* package has to import.

Jdbc Process:

For connecting java program with either database or DSN JDBC Process is used. It consists of

following steps:

1. To import JDBC-API.

The name of jdbc-api is java.sql. It consists of following classes and interfaces which are

require for the JDBC application. The List is as follow:

Interfaces:

 Connection

 Statement

 PreparedStatement

 CollableStatement

 ResultSet

 ResultSetMetaData

 DatabaseMetaData

Classes:

 DriverManager

 Class

2. To load the driver.

Loading is a process used to bring the drivers from operating system to JVM. For loading

drivers following statement is used:

Class.forName (“sun.jdbc.odbc.JdbcOdbcDriver”);

 The forName() is a static method of class Class used to load given driver into the JVM, If

 driver is not available then it throws ClassNotFoundException.

3. To establish the connection between java program and Database or DSN (Data

Source Name).

 Connection cn=DriverManager.getConnection(“jdbc:odbc:DSN”, ”username”,

“password”);

The getConnection () is a static method of DriverManager class used to set connection

between java program and database or DSN.

4. To create a Statement.

Statement st=cn.createStatement ();

Statement interface is used to execute database queries after making the connection with

database. It is used to execute static query. The Statement interface has following

methods:

 boolean execute()

 int executeUpdate()

 ResultSet executeQuery()

5. To generate the result.

Consider Emp (Eno, EName, Salary) table.

ResultSet rs = st . executeQuery(“select * from emp”);

 After execution of database query, data from Emp table will get store into ResultSet

 object rs.

 Emp Table

ENo EName Salary

101 Advait 70,000

102 Ajay 60,000

103 Vikas 80,000

 ResultSet rs

ENo EName Salary

101 Advait 70,000

102 Ajay 60,000

103 Vikas 80,000

 For reading data record wise from ResultSet interface next() method is used.

 rs.next()

 101 Advait 70,000

 Index of first column in ResultSet interface is 1. For reading data, column wise from

 ResultSet interface getXXX() method is used.

 The getXXX() method is available in 3 forms:

 getInt() : It reads numeric value.

 getFloat() : It reads float value.

 getString() : It reads all kinds of values.

 rs.getString(2); => Advait

6. To close the Connection.

cn.close();

DSN (Data Source Name):

It can be created as follow:

1. Open Control Panel + Administrative Tools + Data Sources.

2. Click on Add Button.

3. Select appropriate driver for Access Database. (Microsoft Access Driver (*.mdb).

4. Give name to the DSN and select database for which DSN has to be created.

5. Click on ok button. DSN will be added into the list.

JDBC Components:

1. DriverManager Class:

 The DriverManager class acts as an interface between user and drivers.

 It keeps track of the drivers that are available and handles establishing a connection

between a database and the appropriate driver.

 The DriverManager class maintains a list of Driver classes that have registered

themselves by calling the method DriverManager.registerDriver ().

 Methods used in DriverManager class

Method Description

public static void

registerDriver(Driver driver)

It is used to register the given driver with

DriverManager.

public static void

deregisterDriver(Driver driver)

It is used to deregister the given driver (drop the

driver from the list) with DriverManager.

 public static Connection

getConnection(String url)

It is used to establish the connection with the

specified url.

 public static Connection

getConnection(String url, String

userName, String password)

It is used to establish the connection with the

specified url, username and password.

Syntax:

Connection cn= DriverManager.getConnection(ConnectionString,userID,Password);

 2. Connection Interface:

 A Connection is the session between java application and database.

 The Connection interface is a factory of Statement, PreparedStatement, and

DatabaseMetaData i.e. object of Connection can be used to get the object of Statement

and DatabaseMetaData.

 The Connection interface provide many methods for transaction management like

commit(), rollback() etc.

 By default, connection commits the changes after executing queries.

 Methods used in Connection Interface:

Method Description

public Statement

createStatement()

Creates a statement object that can be used to execute

SQL queries.

public Statement

createStatement(int

resultSetType,int

resultSetConcurrency)

Creates a Statement object that will generate ResultSet

objects with the given type and concurrency.

 public void

setAutoCommit(boolean status)

It is used to set the commit status. By default it is true.

public void commit() It saves the changes made since the previous

commit/rollback permanent.

public void rollback() Drops all changes made since the previous

commit/rollback.

public void close() closes the connection and Releases a JDBC resources

immediately.

Syntax:

Connection cn; //creating a Connection object

3. Statement Interface:

 Statement st = cn.createStatement (); //creating Statement object

 There are three types of Statements

a. Statement

b. PreparedStatement

c. CallableStatement

a. Statement Interface:

 The Statement interface provides methods to execute queries with the database.

 The statement interface is a factory of ResultSet i.e. it provides factory method to get the

object of ResultSet.

 The important methods of Statement interface are as follows:

Method Description

public ResultSet

executeQuery(String sql)

 It is used to execute SELECT query. It returns the

object of ResultSet.

public int executeUpdate(String

sql)

It is used to execute specified query, it may be create,

drop, insert, update, delete etc.

public boolean execute(String sql) It is used to execute queries that may return multiple

results.

public int[] executeBatch() It is used to execute batch of commands.

b. PreparedStatement:

 The PreparedStatement interface is a sub interface of Statement.

 It is used to execute parameterized precompiled query.

 Let's see the example of parameterized query:

String sql="insert into emp values(?,?,?)";

 Here, we are passing parameter (?) as a placeholder for the values. Its value will be set by

calling the setter methods of PreparedStatement.

 The performance of the application will be faster if you use PreparedStatement interface

because query is compiled only once.

 The prepareStatement () method of Connection interface is used to return the object of

PreparedStatement.

 Syntax

public PreparedStatement prepareStatement(String query)throws SQLException{}

The important methods of PreparedStatement interface are given below:

Method Description

public void setInt(int paramIndex,

int value)

Sets the integer value to the given parameter

index.

public void setString(int

paramIndex, String value)

Sets the String value to the given parameter

index.

public void setFloat(int

paramIndex, float value)

Sets the float value to the given parameter index.

public void setDouble(int Sets the double value to the given parameter

paramIndex, double value) index.

public int executeUpdate() Executes the query. It is used for create, drop,

insert, update, delete etc.

public ResultSet executeQuery() Executes the select query. It returns an instance

of ResultSet.

c. CallableStatement Interface:

 CallableStatement interface is used to call the stored procedures and functions.

 For Example: Suppose you need the get the age of the employee based on the date of birth,

you may create a function that receives date as the input and returns age of the employee as

the output.

 The prepareCall() method of Connection interface returns the instance of

CallableStatement.

 Syntax:

public CallableStatement prepareCall("{ call procedurename(?,?...?)}");

 Syntax:

CallableStatement stmt=cn.prepareCall("{call Disp(?,?)}");

Here it calls the procedure Disp that receives 2 arguments.

 Difference between Statement, PreparedStatement and CallableStatement In Java :

Statement PreparedStatement CallableStatement

It is used to execute

normal SQL queries.

It is used to execute

parameterized or dynamic

SQL queries.

It is used to call the stored

procedures.

It is preferred when a

particular SQL query

is to be executed only

once.

It is preferred when a

particular query is to be

executed multiple times.

It is preferred when the

stored procedures are to be

executed.

You cannot pass the

parameters to SQL

query using this

interface.

You can pass the

parameters to SQL query at

run time using this

interface.

You can pass 3 types of

parameters using this

interface. They are – IN,

OUT and IN OUT.

This interface is

mainly used for DDL

statements like

CREATE, ALTER,

It is used for any

kind of SQL queries which

are to be executed multiple

times.

It is used to execute stored

procedures and functions.

DROP etc.

The performance of

this interface is very

low.

The performance of this

interface is better than the

Statement interface (when

used for multiple execution

of same query).

The performance of this

interface is high.

4. ResultSet Interface

 The object of ResultSet maintains a cursor pointing to a row of a table. Initially, cursor

points to before the first row.

 ResultSet object can be moved forward only and it is not updatable.

 But we can make this object to move forward and backward direction by passing either

TYPE_SCROLL_INSENSITIVE or TYPE_SCROLL_SENSITIVE in

createStatement(int, int) method as well as we can make this object as updatable.

 There are three Types of ResultSet:

Type Description

ResultSet.TYPE_FORWARD_ONLY

(Default)

The cursor can only move forward in the

result set.

ResultSet.TYPE_SCROLL_INSENSITIVE The cursor can scroll forward and

backward, and the result set is not sensitive

to changes made by others to the database

that occur after the result set was created.

ResultSet.TYPE_SCROLL_SENSITIVE. The cursor can scroll forward and

backward, and the result set is sensitive to

changes made by others to the database

that occur after the result set was created.

 For Example

Statement st = cn.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

 Syntax: Using Statement Interface

Statement st = cn.createStatement();

ResultSet rs = st.executeQuery("select * from Emp");

Using PreparedStatement Interface

String sql = "select * from Emp";

PreparedStatement ps = cn.prepareStatement(sql);

ResultSet rs = st.executeQuery();

 Methods used in ResultSet interface:

Method Description

public boolean next() It is used to move the cursor to the one row next from the

current position.

public boolean previous() It is used to move the cursor to the one row previous from

the current position.

public boolean first() It is used to move the cursor to the first row in result set

object.

 public boolean last() It is used to move the cursor to the last row in result set

object.

public boolean

absolute(int row)

It is used to move the cursor to the specified row number in

the ResultSet object.

 public boolean

relative(int row)

It is used to move the cursor to the relative row number in

the ResultSet object, it may be positive or negative.

 public int getInt(int

columnIndex)

It is used to return the data of specified column index of the

current row as int.

public int getInt(String

columnName)

It is used to return the data of specified column name of the

current row as int.

public String

getString(int

columnIndex)

It is used to return the data of specified column index of the

current row as String.

public String

getString(String

columnName)

It is used to return the data of specified column name of the

current row as String.

5. Closing the resources:

 Once all the data is retrieved and all the operations are completed. We must close all

the resources

 For Example:

st.close(); //Statement closed

rs.close(); //ResultSet close

cn.close(); //Connection closed

Examples:

1. Write a Menu Driven Java program for the following:

1. Create

2. Insert

3. Update

4. Delete

5. Display

6. Exit

 Solution:

import java.sql.*;

import java.io.*;

class DBDemo

{

 public static void main(String args[]) throws Exception

 {

 String sql,sn;

 int r,p,k,ch;

 BufferedReader br=new BufferedReader (new InputStreamReader(System.in));

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection cn=DriverManager.getConnection("jdbc:odbc:DSN","","");

 Statement st=cn.createStatement();

 do

 {

 System.out.println("1. Create");

 System.out.println("2. Insert");

 System.out.println("3. Update");

 System.out.println("4. Delete");

 System.out.println("5. Display");

 System.out.println("6. Exit");

 System.out.println("Enter Your Choice");

 ch=Integer.parseInt(br.readLine());

 switch(ch)

 {

 case 1:

 sql="create table stud (rno number, sname text, per number)";

 st.execute(sql);

 System.out.println("Table Is Created...!");

 break;

 case 2:

 System.out.println("RNo Sname Per");

 r=Integer.parseInt(br.readLine());

 sn=br.readLine();

 p=Integer.parseInt(br.readLine());

 sql="insert into stud values("+ r + ",'"+ sn +"'," + p +")";

 k=st.executeUpdate(sql);

 if(k>0)

 System.out.println("Record Is Added...!");

 break;

 case 3:

 System.out.println("RNo And Per");

 r=Integer.parseInt(br.readLine());

 p=Integer.parseInt(br.readLine());

 sql="update stud set per=" + p + " where rno=" + r;

 k=st.executeUpdate(sql);

 if(k>0)

 System.out.println("Record Is Updated...!");

 break;

 case 4:

 System.out.println("RNo");

 r=Integer.parseInt(br.readLine());

 sql="delete from stud where rno=" + r;

 k=st.executeUpdate(sql);

 if(k>0)

 System.out.println("Record Is Deleted...!");

 break;

 case 5:

 System.out.println("Records from Table are...");

 ResultSet rs=st.executeQuery("select * from stud");

 while(rs.next())

 {

 System.out.println(rs.getString(1) + " " + rs.getString(2) + " " +

 rs.getString(3));

 }

 break;

 case 6:

 cn.close();

 System.exit(0);

 }

 }

 while(ch!=6);

 }

}

2. Write a java program for the implementation of DDL Commands.(Use Swing)

Solution:

import java.awt.*;

import java.awt.event.*;

import java.sql.*;

import javax.swing.*;

class DDLDemo extends Frame implements ActionListener

{

 Button b1,b2,b3;

 TextField t1;

 String sql;

 Label l1;

 Connection cn;

 Statement st;

 public DDLDemo()

 {

 setLayout(null);

 l1=new Label("Type Your Query Here");

 t1=new TextField();

 b1=new Button("Create");

 b2=new Button("Alter");

 b3=new Button("Drop");

 l1.setBounds(100,100,100,30);

 t1.setBounds(220,100,300,30);

 b1.setBounds(100,140,100,30);

 b2.setBounds(220,140,100,30);

 b3.setBounds(340,140,100,30);

 add(l1);

 add(t1);

 add(b1);

 add(b2);

 add(b3);

 setSize(500,500);

 setVisible(true);

 setTitle("DDL Commands");

 b1.addActionListener(this);

 b2.addActionListener(this);

 b3.addActionListener(this);

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 cn=DriverManager.getConnection("jdbc:odbc:DSN","","");

 st=cn.createStatement();

 }

 catch(Exception obj)

 {

 }

 }

 public void actionPerformed(ActionEvent ae)

 {

 try

 {

 Button b=(Button)ae.getSource();

 if(b==b1)

 {

 sql=t1.getText();

 st.execute(sql);

 JOptionPane.showMessageDialog(null," Table Is Created");

 }

 if(b==b2)

 {

 sql=t1.getText();

 st.execute(sql);

 JOptionPane.showMessageDialog(null, "Table Is Altered");

 }

 if(b==b3)

 {

 sql=t1.getText();

 st.execute(sql);

 JOptionPane.showMessageDialog(null, "Table Is Deleted");

 }

 }

 catch(Exception obj)

 {

 }

 }

 public static void main(String args[]) throws Exception

 {

 new DDLDemo();

 }

}

3. Write a java program for the implementation of Scrollable ResultSet.

 Solution:

import java.sql.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class ScrImp extends JFrame implements ActionListener

{

 JButton b1,b2,b3,b4;

 JTextField t1,t2,t3;

 JLabel l1,l2,l3;

 String sql,en;

 int e,s,i;

 Connection cn;

 ResultSet rs;

 Statement st;

 public ScrImp()

 {

 setLayout(null);

 l1=new JLabel("ENo");

 l2=new JLabel("EName");

 l3=new JLabel("Salary");

 t1=new JTextField();

 t2=new JTextField();

 t3=new JTextField();

 b1=new JButton("First");

 b2=new JButton("Next");

 b3=new JButton("Prev");

 b4=new JButton("Last");

 l1.setBounds(100,100,100,30);

 t1.setBounds(220,100,100,30);

 l2.setBounds(100,140,100,30);

 t2.setBounds(220,140,100,30);

 l3.setBounds(100,180,100,30);

 t3.setBounds(220,180,100,30);

 b1.setBounds(100,220,100,30);

 b2.setBounds(220,220,100,30);

 b3.setBounds(100,260,100,30);

 b4.setBounds(220,260,100,30);

 add(l1);

 add(t1);

 add(l2);

 add(t2);

 add(l3);

 add(t3);

 add(b1);

 add(b2);

 add(b3);

 add(b4);

 setSize(500,500);

 setVisible(true);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 b1.addActionListener(this);

 b2.addActionListener(this);

 b3.addActionListener(this);

 b4.addActionListener(this);

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 cn=DriverManager.getConnection("jdbc:odbc:TYBBACA","","");

 st=cn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

 rs=st.executeQuery("select * from emp");

 rs.next();

 t1.setText(rs.getString(1));

 t2.setText(rs.getString(2));

 t3.setText(rs.getString(3));

 }

 catch(Exception obj)

 {

 }

}

 public void actionPerformed (ActionEvent ae)

 {

 try

 {

 JButton b=(JButton)ae.getSource();

 if(b==b1)

 {

 rs.first();

 t1.setText(rs.getString(1));

 t2.setText(rs.getString(2));

 t3.setText(rs.getString(3));

 }

 if(b==b2)

 {

 rs.next();

 t1.setText(rs.getString(1));

 t2.setText(rs.getString(2));

 t3.setText(rs.getString(3));

 }

 if(b==b3)

 {

 rs.previous();

 t1.setText(rs.getString(1));

 t2.setText(rs.getString(2));

 t3.setText(rs.getString(3));

 }

 if(b==b4)

 {

 rs.last();

 t1.setText(rs.getString(1));

 t2.setText(rs.getString(2));

 t3.setText(rs.getString(3));

 }

 }

 catch(Exception obj)

 {

 }

 }

 public static void main(String args[])

 {

 new ScrImp();

 }

}

4. Write a java program for the implementation of JTable.

Solution:

import java.sql.*;

import java.awt.*;

import javax.swing.*;

class JTab extends JFrame

{

 String head[]={"ENo", "EName","Salary"};

 String data[][];

 int i;

 public JTab()

 {

 i=0;

 setSize(500,500);

 setVisible(true);

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection cn = DriverManager.getConnection ("jdbc:odbc:TYBBACA", "","");

 Statement st=cn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

 ResultSet rs=st.executeQuery("select * from emp");

 rs.last();

 int r=rs.getRow();

 data=new String[r][3];

 rs.first();

 while(rs.next())

 {

 data[i][0]=rs.getString(1);

 data[i][1]=rs.getString(2);

 data[i][2]=rs.getString(3);

 i++;

 }

//rs.refreshRow();

 JTable jt=new JTable(data,head);

 JScrollPane jp=new JScrollPane(jt);

 add(jp);

 }

 catch(Exception obj)

 {

 System.out.println(obj);

 }

 }

 public static void main(String args[])

 {

 new JTab();

 }

}

5. Write a java program to accept the details of Teacher(TID, TName, Salary) and

store it into the database. (PreparedStatement Interface).

 Solution:

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.sql.*;

class PDemo extends JFrame implements ActionListener

{

 JLabel l1,l2,l3;

 JTextField t1,t2,t3;

 JButton b1,b2;

 String sql,tn;

 int s,tid,k;

 Connection cn;

 PreparedStatement ps;

 public PDemo()

 {

 setLayout(null);

 l1=new JLabel("TID");

 l2=new JLabel("TName");

 l3=new JLabel("Salary");

 t1=new JTextField();

 t2=new JTextField();

 t3=new JTextField();

 b1=new JButton("Save");

 b2=new JButton("Cancel");

 l1.setBounds(100,100,100,30);

 t1.setBounds(220,100,100,30);

 l2.setBounds(100,140,100,30);

 t2.setBounds(220,140,100,30);

 l3.setBounds(100,180,100,30);

 t3.setBounds(220,180,100,30);

 b1.setBounds(100,220,100,30);

 b2.setBounds(220,220,100,30);

 add(l1);

 add(t1);

 add(l2);

 add(t2);

 add(l3);

 add(t3);

 add(b1);

 add(b2);

 setSize(500,500);

 setVisible(true);

 setTitle("Teacher Info");

 b1.addActionListener(this);

 b2.addActionListener(this);

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 cn=DriverManager.getConnection("jdbc:odbc:DSN","","");

 }

 catch(Exception obj)

 {

 }

 }

 public void actionPerformed(ActionEvent ae)

 {

 JButton b=(JButton)ae.getSource();

 if(b==b1)

 {

 tid=Integer.parseInt(t1.getText());

 tn=t2.getText();

 s=Integer.parseInt(t3.getText());

 try

 {

 sql="insert into emp values(?,?,?)";

 ps=cn.prepareStatement(sql);

 ps.setInt(1,tid);

 ps.setString(2,tn);

 ps.setInt(3,s);

 k=ps.executeUpdate();

 if(k>0)

 JOptionPane.showMessageDialog(null,"Record Is Added....!");

 }

 catch(Exception obj)

 {

 System.out.println(obj);

 }

 }

 if(b==b2)

 {

 try

 {

 cn.close();

 System.exit(0);

 }

 catch(Exception obj)

 {

 }

 }

 }

 public static void main(String args[])

 {

 new PDemo();

 }

}

Set A:

1. Write a java program to count number of records in a table.

2. Write a java program to display all the EName from Emp table. Assume Emp (ENo,

EName, Salary) table is already created.

3. Write a java program to create Student table with attributes Rno, Sname, Per.

4. Write a java program to delete salary column from Emp table. Assume Emp table

with attributes ENo, EName and salary is already created.

5. Write a java program to delete the details of given Teacher. Assume Teacher table

with attributes tno, tname, subject is already created.

Set B:

1. Write a java program to accept the details of Hospital (HId, HName, Address,

PH_No) and store it into the database. (Use Swing).

2. Write a java program to display the details of Doctor (DNO, DName, Specialization)

on JTable. Assume Doctor table is already created.

3. Write a java program to make the changes in data which is in ResultSet if you make

the changes in data in database.

4. Write a java program for the following:

 Create a Table

 Alter a Table

 Drop a Table

5. Write a java program to accept the details of College (CID, CName, Address) and

display it on next frame. (Use Swing and PreparedStatement).

 Set C:

1. Write a java program for the following:

a. Create a table.

b. Insert

c. Update

d. Search

e. Display

2. Write a java program to update the salary of given employee and display updated

details in JTable. (Use Swing). Assume Emp (ENo, EName, Sal) table is already

created.

3. Write a java program for the implementation of Scrollable ResultSet. Consider

Teacher (TID, TName, Subject) table is already created.

4. Write a java program for the following:

Accept the details of 5 Employees (ENo, EName, Salary), store it into the JTable by

clicking on Add Button. If user clicks on Save button then data from JTable must be

save into the database.

5. Write a java program to create at least 5 tables in a database. Add a column(field) in a

given table. Drop given table from the database.

Assignment Evaluation:

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: WellDone []

Signature of Instructor

Assignment No 2: MultiThreading:

 A smallest unit of a program which is in executive mode is called thread. Multithreading

allows concurrent execution of two or more parts of a program for maximum utilization of CPU.

Each part of such program is called a thread. So, threads are light-weight processes within a

process.

 There are basically two types of a thread, Main thread and child thread. A thread which

contains main method is called main thread and all other threads are called child threads.

Execution as well as termination of a program is done from the main thread.

Methods of Thread Class:-

Method Description

String getName() Retrieves the name of running thread in the current context in

String format

void start() This method will start a new thread of execution by calling

run() method of Thread/runnable object.

void run() This method is the entry point of the thread. Execution of

thread starts from this method.

void sleep(int

sleeptime)

This method suspend the thread for mentioned time duration in

argument (sleeptime in ms)

void yield() By invoking this method the current thread pause its execution

temporarily and allow other threads to execute.

void join() This method used to queue up a thread in execution. Once

called on thread, current thread will wait till calling thread

completes its execution

boolean isAlive() This method will check if thread is alive or dead

void interrupt() This method interrupts this thread.

void setName(String

name)

This method changes the name of this thread to be equal to the

argument name

void stop() This method stops an execution of a thread permanently.

https://www.tutorialspoint.com/java/lang/thread_setname.htm
https://www.tutorialspoint.com/java/lang/thread_setname.htm

Thread Creation:

Thread can be created as follow:

1. By extending Thread class

2. By implementing Runnable interface.

1. Thread creation by extending the Thread class:

class MyThread extends Thread

{

 MyThread()

 {

 start();

 }

 public void run()

 {

 }

 }

 class MainClass

 {

 public static void main(String args[])

 {

 MyThread tobj=new MyThread();

 }

 }

2. Thread creation by implementing Runnable Interface:

class MyThread implements Runnable

 {

 Thread T1;

 MyThread()

 {

 T1 =new Thread(this, ”Name Of Thread”);

 T1.start ();

 }

 public void run()

 {

 }

 }

 class MainThread

 {

 public static void main(String args[])

 {

 MyThread tobj=new MyThread ();

 }

 }

Thread Priority:

1. public static int MIN_PRIORITY

It holds the minimum priority that can be given to a thread. The value for this is 1.

2. public static int NORM_PRIORITY

 It is the default priority that is given to a thread if it is not defined. The value for

 this is 5.

3. public static int MAX_PRIORITY

 It is the maximum priority that can be given to a thread. The value for this is 10.

Get and Set methods in Thread priority

1. public final int getPriority()

In Java, getPriority () method is in java.lang.Thread package. It is used to get the

priority of a thread.

2. public final void setPriority(int newPriority)

Synchronization:

 Synchronization is a process of handling resource accessibility by multiple thread

requests. The main purpose of synchronization is to avoid thread interference. At times

when more than one thread try to access a shared resource, we need to ensure that

resource will be used by only one thread at a time. The process by which this is achieved

is called synchronization. The synchronized keyword creates a block of code referred to

as critical section.

 synchronized (Object)

 {

 }

 Example: Write a java program for the implementation of synchronization.

 class Table

 {

 synchronized void printTable(int n)

 {

 for(int i=1;i<=10;i++)

 {

 System.out.println(n*i);

 try

 {

 Thread.sleep(400);

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

 }

 }

 class MyThread1 extends Thread

 {

 Table t;

 MyThread1(Table t)

 {

 this.t=t;

 }

 public void run()

 {

 t.printTable(5);

 }

 }

 class MyThread2 extends Thread

 {

 Table t;

 MyThread2(Table t)

 {

 this.t=t;

 }

 public void run()

 {

 t.printTable(10);

 }

 }

 public class TestSynchronization2

 {

 public static void main(String args[])

 {

 Table obj = new Table();//only one object

 MyThread1 t1=new MyThread1(obj);

 MyThread2 t2=new MyThread2(obj);

 t1.start();

 t2.start();

 }

 }

Solved Examples:

1. Write a java program for bouncing ball.

Solution:

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

/*<applet code="AssBall" width="400" height="400"> </applet> */

public class AssBall extends Applet implements ActionListener, Runnable

{

 Thread t1;

 int y,cnt;

 Button b1;

 public void init()

 {

 cnt=1;

 y=400;

 t1=new Thread(this,"Ass");

 b1=new Button("Start");

 b1.setBounds(100,100,100,30);

 add(b1);

 b1.addActionListener(this);

 }

 public void actionPerformed(ActionEvent ae)

 {

 t1.start();

 }

 public void run()

 {

 try

 {

 while(true)

 {

 t1.sleep(100);

 if(y>0 && cnt==1)

 {

 y=y-5;

 repaint();

 }

 else if(y<=0 && cnt==1)

 {

 cnt=0;

 }

 else if(y<=400 && cnt==0)

 {

 y=y+5;

 repaint();

 }

 else

 cnt=1;

 }

 }

 catch(Exception obj)

 {

 }

 }

 public void paint(Graphics g)

 {

 Random r=new Random();

 int rr=r.nextInt(255);

 int gg=r.nextInt(255);

 int bb=r.nextInt(255);

 Color c=new Color(rr,gg,bb);

 g.setColor(c);

 g.fillOval(200,y,100,100);

 }

 }

2. Write a java program for drawing flag.

Solution:

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

/*<applet code="AssFlag" width="400" height="400"> </applet> */

public class AssFlag extends Applet implements Runnable

{

 Thread t1;

 int x,y,x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6;

 int x7,y7,x8,y8;

 public void init()

 {

 x7=x8=100;

 y7=y8=150;

 x5=y5=x6=y6=125;

 x=x2=y2=100;

 x3=x4=150;

 y4=y3=100;

 y=100;

 x1=100;

 y1=100;

 t1=new Thread(this,"Ass");

 t1.start();

 }

 public void run()

 {

 try

 {

 while(true)

 {

 t1.sleep(100);

 if(y1<=300)

 {

 y1=y1+5;

 repaint();

 }

 if(x2<=150)

 {

 x2=x2+5;

 repaint();

 }

 if(x4>=125 && y4<=125)

 {

 x4=x4-5;

 y4=y4+5;

 repaint();

 }

 if(x6<=150 && y6<=150)

 {

 x6=x6+5;

 y6=y6+5;

 repaint();

 }

 if(x8<=150)

 {

 x8=x8+5;

 repaint();

 }

 }

 }

 catch(Exception obj)

 {

 }

 }

 public void paint(Graphics g)

 {

 g.drawLine(x,y,x1,y1);

 g.drawLine(x,y,x2,y2);

 g.drawLine(x3,y3,x4,y4);

 g.drawLine(x5,y5,x6,y6);

 g.drawLine(x7,y7,x8,y8);

 }

 }

3. Write a java program to blink image.

Solution:

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

class Blink extends JFrame implements ActionListener,Runnable

{

 Thread t1;

 JLabel l1;

 JButton b1;

 boolean b;

 public Blink()

 {

 b=true;

 setLayout(null);

 ImageIcon img=new ImageIcon("Koala.jpg");

 l1=new JLabel(img);

 t1=new Thread(this,"DYP");

 b1=new JButton("Blink");

 l1.setBounds(100,100,100,100);

 b1.setBounds(100,210,100,30);

 add(l1);

 add(b1);

 setSize(400,400);

 setVisible(true);

 b1.addActionListener(this);

 }

 public void actionPerformed(ActionEvent ae)

 {

 t1.start();

 }

 public void run()

 {

 try

 {

 while(true)

 {

 t1.sleep(500);

 if(b==true)

 {

 l1.setVisible(true);

 b=false;

 }

 else

 {

 l1.setVisible(false);

 b=true;

 }

 }

 }

 catch(Exception obj)

 {

 }

 }

public static void main(String args[])

{

 new Blink();

}

}

4. Write a java program to display numbers between 1 to 100 in TextField. Each

number should display after 2 seconds.

 Solution:

import java.awt.*;

import java.awt.event.*;

class NumText extends Frame implements Runnable, ActionListener

{

 TextField t1;

 Thread t;

 Button b;

 int i;

 public NumText()

 {

 setLayout(null);

 t1=new TextField();

 t=new Thread(this,"Ass7B");

 b=new Button("Start");

 t1.setBounds(100,100,100,30);

 b.setBounds(100,140,100,30);

 add(t1);

 add(b);

 b.addActionListener(this);

 setSize(400,400);

 setVisible(true);

 }

 public void actionPerformed(ActionEvent ae)

 {

 t.start();

 }

 public void run()

 {

 try

 {

 for(i=1;i<=100;i++)

 {

 t.sleep(200);

 t1.setText(Integer.toString(i));

 }

 }

 catch(Exception obj)

 {

 }

 }

 public static void main(String args[])

 {

 new NumText();

 }

}

5. Write a program to calculate the sum and average of an array of 1000 integers

(generated randomly) using 10 threads. Each thread calculates the sum of 100

integers. Use these values to calculate average. [Use join method].

Solution:

import java.util.*;

class Mythread implements Runnable

{

 Thread t;

 int i,no,sum;

 int a[]=new int[1000];

 String TN="";

 Mythread(String s,int n)

 {

 TN=s;

 Random rs = new Random();

 t=new Thread(this,s);

 no=n;

 int j=0;

 for(i=1;i<=1000;i++)

 {

 a[j]=rs.nextInt(1000);

 j++;

 }

 t.start();

 }

 public void run()

 {

 for(i=0;i<100;i++)

 {

 sum=sum+a[no];

 no++;

 }

 System.out.println("Name of thread is = "+TN);

 System.out.println("Sum = "+sum);

 System.out.println("Avg ="+sum/100);

 }

 }

public class ThreadDemo

{

 public static void main(String[] arg) throws InterruptedException

 {

 int n=0;

 String TName[]={"One","Two","Third","Fourth","Fifth","Six", "Seven",

 "Eighth","Nineth", "Tenth" };

 Mythread T[] = new Mythread[10];

 for(int i=0;i<10;i++)

 {

 T[i]=new Mythread(TName[i],n);

 n=n+100;

 T[i].t.join();

 }

 }

}

6. Java Program to create multiple threads using the Thread class.

Solution:

class MyThread extends Thread

{

String message;

MyThread(String message)

{

this.message = message;

}

public void run()

{

try

{

for(int i=1; i<=5; i++)

{

System.out.println(message + ”-” + i);

Thread.sleep(5000); //sleep for 5 seconds

}

}

catch(InterruptedException ie) { }

}

}

public class MultipleThreadDemo

{

public static void main(String[] args)

{

MyThread t1 = new MyThread(“One”);

MyThread t2 = new MyThread(“Two”);

System.out.println(t1);

System.out.println(t2); t1.start();

t2.start();

}

 }

7. Java program to demonstrate Synchronization of a Thread

Solution:

class mythread extends Thread

{

String msg[]={"Java", "Supports", "Multithreading", "Concept"};

mythread(String name)

{

super(name);

}

public void run()

{

display(getName());

System.out.println("Exit from "+getName());

}

synchronized void display(String name) //Synchrinized method

{

for(int i=0;i<msg.length;i++)

{

System.out.println(name+msg[i]);

}

}

} /* Main class */

class MySynchro

{

public static void main(String args[])

{

mythread t1=new mythread("Thread 1: ");

mythread t2=new mythread("Thread 2: ");

t1.start();

t2.start();

System.out.println("Main thread exited");

}

}

Set A:

1. Write a multithreading program in java to display all the integers between 1 to 100

randomly after 2 seconds.

2. Write a multithreading program in java to display all the characters between Z to A

after 5 seconds.

3. Write a java program to print “Hello Java” message 10 times.

4. Write a program in which thread sleep for 6 sec in the loop in reverse order from 100

to 1 and change the name of thread.

5. Write a java program to display all the vowels from a given String. Each vowel

should display after 3 seconds.

Set B:

1. Program to define a thread for printing text on output screen for ‘n’ number of times.

Create 3 threads and run them. Pass the text ‘n’ parameters to the thread constructor.

Example:

i. First thread prints “Hello” 10 times.

ii. Second thread prints “Good Morning” 20 times

iii. Third thread prints “Sir/Mam” 30 times.

2. Write a java program in multithreading to create 3 balls and bounce them vertically.

3. Write a java program in multithreading to draw five lines vertically.

4. Write a java program to create 2 cars and move them randomly from left to right.

5. Write a java program to display the characters from a given string into the TextField.

Each character should be displayed after 1 second.

Set C:

1. Write a program to solve producer consumer problem in which a producer produces a

value and consumer consume the value before producer generate the next value.

(Hint: use thread synchronization)

2. Write a program to calculate the sum and average of an array of 1000 integers

(generated randomly) using 10 threads. Each thread calculates the sum of 100

integers. Use these values to calculate average. [Use join method].

3. Write a program that implements a multi-thread application that has three threads.

First thread generates random integer every 1 second and if the value is even, second

thread computes the square of the number and prints. If the value is odd, the third

thread will print the value of cube of the number.

4. Write a java program for drawing simple house.

5. Write a java program for drawing star on the applet container.

Assignment Evaluation:

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: WellDone []

Signature of Instructor

3. Socket Programming

Java Socket programming is used for communication between the applications running on

different JRE. Java Socket programming can be connection-oriented or connection-less.

Socket and ServerSocket classes are used for connection-oriented socket programming and

DatagramSocket and DatagramPacket classes are used for connection-less socket programming.

The client in socket programming must know two information:

1. IP Address of Server

2. Port number.

Here, we are going to make one-way client and server communication. In this application,

client sends a message to the server; server reads the message and prints it. Here, two classes are

being used: Socket and ServerSocket. The Socket class is used to communicate client and server.

Through this class, we can read and write message. The ServerSocket class is used at server-side.

The accept () method of ServerSocket class blocks the console until the client is connected. After

the successful connection of client, it returns the instance of Socket at server-side.

Socket class

A socket is simply an endpoint for communications between the machines. The Socket class can

be used to create a socket.

Important methods:

Method Description

1) public InputStream getInputStream() Returns the InputStream attached with this socket.

2) public OutputStream

getOutputStream()

Returns the OutputStream attached with this

socket.

3) public synchronized void close() closes this socket

ServerSocket class

The ServerSocket class can be used to create a server socket. This object is used to establish

communication with the clients.

Important methods

Method Description

1) public Socket accept() Returns the socket and establish a connection between

server and client.

2) public synchronized void

close()

Closes the server socket.

How to develop Socket application:

Creating Server:

To create the server application, we need to create the instance of ServerSocket class. Here, we

are using 6666 port number for the communication between the client and server. You may also

choose any other port number. The accept () method waits for the client. If clients connects with

the given port number, it returns an instance of Socket.

ServerSocket ss=new ServerSocket (6666);

Socket s=ss.accept ();//establishes connection and waits for the client.

Creating Client:

To create the client application, we need to create the instance of Socket class. Here, we need to

pass the IP address or hostname of the Server and a port number. Here, we are using "localhost"

because our server is running on same system.

Socket s=new Socket("localhost",6666);

Let's see a simple of Java socket programming where client sends a text and server receives and

prints it.

File: MyServer.java

import java.io.*;

import java.net.*;

public class MyServer

{

public static void main(String args[])

{

try

{

ServerSocket ss=new ServerSocket(6666);

Socket s=ss.accept();//establishes connection

DataInputStream dis=new DataInputStream(s.getInputStream());

String str=(String)dis.readUTF();

System.out.println ("message= "+str);

ss.close();

}

catch(Exception e)

{System.out.println(e);}

}

}

File: MyClient.java

import java.io.*;

import java.net.*;

public class MyClient

{

public static void main(String[] args)

{

try

{

Socket s=new Socket("localhost",6666);

DataOutputStream dout=new DataOutputStream(s.getOutputStream());

dout.writeUTF("Hello Server");

dout.flush();

dout.close();

s.close();

}

catch(Exception e){System.out.println(e);}

}

}

Socket Application with IP Address of Server:

Client Application:

Establish a Socket Connection

To connect to another machine we need a socket connection. A socket connection means the

two machines have information about each other’s network location (IP Address) and TCP

port. The java.net.Socket class represents a Socket. To open a socket:

Socket socket = new Socket (“127.0.0.1”, 5000)

 The first argument – IP address of Server. (127.0.0.1 is the IP address of localhost, where

code will run on the single stand-alone machine).

 The second argument – TCP Port. (Just a number representing which application to run on

a server. For example, HTTP runs on port 80. Port number can be from 0 to 65535)

Communication

To communicate over a socket connection, streams are used to both input and output the data.

Closing the connection

The socket connection is closed explicitly once the message to the server is sent.

In the program, the Client keeps reading input from a user and sends it to the server until

“Over” is typed.

import java.net.*;

import java.io.*;

public class Client

{

 private Socket socket = null;

 private DataInputStream input = null;

 private DataOutputStream out = null;

 public Client(String address, int port)

 {

 // establish a connection

 try

 {

 socket = new Socket(address, port);

 System.out.println("Connected");

 // takes input from terminal

 input = new DataInputStream(System.in);

 // sends output to the socket

 out = new DataOutputStream (socket.getOutputStream());

 }

 catch(UnknownHostException u)

 {

 System.out.println(u);

 }

 catch(IOException i)

 {

 System.out.println(i);

 }

 // string to read message from input

 String line = "";

 // keep reading until "Over" is input

 while (!line.equals("Over"))

 {

 try

 {

 line = input.readLine();

 out.writeUTF(line);

 }

 catch(IOException i)

 {

 System.out.println(i);

 }

 }

 // close the connection

 try

 {

 input.close();

 out.close();

 socket.close();

 }

 catch(IOException i)

 {

 System.out.println(i);

 }

 }

 public static void main(String args[])

 {

 Client client = new Client("127.0.0.1", 5000);

 }

}

Server Programming

Establish a Socket Connection

To write a server application two sockets are needed.

 A ServerSocket which waits for the client requests (when a client makes a new Socket())

 A plain old Socket is use for communication with the client.

Communication

The getOutputStream () method is used to send the output through the socket.

Close the Connection

After finishing, it is important to close the connection by closing the socket as well as

input/output streams.

// A Java program for a Server

import java.net.*;

import java.io.*;

public class Server

{

 //initialize socket and input stream

 private Socket socket = null;

 private ServerSocket server = null;

 private DataInputStream in = null;

 // constructor with port

 public Server(int port)

 {

 // starts server and waits for a connection

 try

 {

 server = new ServerSocket(port);

 System.out.println("Server started");

 System.out.println("Waiting for a client ...");

 socket = server.accept();

 System.out.println("Client accepted");

 // takes input from the client socket

 in = new DataInputStream(new BufferedInputStream

 (socket.getInputStream ()));

 String line = "";

 // reads message from client until "Over" is sent

 while (!line.equals("Over"))

 {

 try

 {

 line = in.readUTF();

 System.out.println(line);

 }

 catch(IOException i)

 {

 System.out.println(i);

 }

 }

 System.out.println("Closing connection");

 // close connection

 socket.close();

 in.close();

 }

 catch(IOException i)

 {

 System.out.println(i);

 }

 }

 public static void main(String args[])

 {

 Server server = new Server(5000);

 }

}

Important Points

 Server application makes a ServerSocket on a specific port which is 5000. This starts

our Server listening for client requests coming in for port 5000.

 Then Server makes a new Socket to communicate with the client.

 socket c = server.accept()

 The accept() method blocks(just sits there) until a client connects to the server.

 Then we take input from the socket using getInputStream() method. Our Server keeps

receiving messages until the Client sends “Over”.

 After we’re done we close the connection by closing the socket and the input stream.

 To run the Client and Server application on your machine, compile both of them. Then

first run the server application and then run the Client application.

 For knowing IPAddress of a machine type ipconfig command on command prompt.

To run on Terminal or Command Prompt

Open two windows one for Server and another for Client

1. First run the Server application as,

 java Server

Server started

Waiting for a client …

2. Then run the Client application on another terminal as,

 java Client

It will show – Connected and the server accepts the client and shows,

Client accepted

3. Then you can start typing messages in the Client window. Here is a sample input to the

Client

Hello

I made my first socket connection

Over

Which the Server simultaneously receives and shows,

Hello

I made my first socket connection

Over

Closing connection

Notice that sending “Over” closes the connection between the Client and the Server just like

said before.

If you’re using Eclipse or likes of such:

1. Compile both of them on two different terminals or tabs

2. Run the Server program first

3. Then run the Client program

4. Type messages in the Client Window which will be received and shown by the Server

Window simultaneously.

5. Type Over to end.

Solved Examples:

1. Java program to display IPAddress of a Machine.

Solution:

import java.io.*;

import java.net.*;

class AssAddr

{

 public static void main(String args[]) throws Exception

 {

 System.out.println("IPAddress Is " + InetAddress.getLocalHost());

 }

}

2. Write a java program to display date of Server machine on client’s machine.

Solution:

 Client.java

import java.io.*;

import java.net.*;

import java.util.*;

class Client

{

 public static void main(String args[]) throws Exception

 {

 String str;

 Socket c=new Socket(InetAddress.getLocalHost(),1234);

 DataInputStream din=new DataInputStream(c.getInputStream());

 DataOutputStream dout=new

DataOutputStream(c.getOutputStream());

 dout.writeUTF("Date Plz");

 str=din.readUTF();

 System.out.println("Date Is " + str);

 }

}

Server.java

import java.io.*;

import java.net.*;

import java.util.*;

class Server

{

 public static void main(String args[]) throws Exception

 {

 String str;

 ServerSocket s=new ServerSocket(1234);

 System.out.println("Wait....Server is Starting");

 Socket c=s.accept();

 DataInputStream din=new DataInputStream(c.getInputStream());

 DataOutputStream dout=new DataOutputStream(c.getOutputStream());

 Date d=new Date();

 dout.writeUTF("Date Is : + d);

 }

}

Set A:

1. Write a java program to display IP address of a machine.

2. Write a java program to accept a number in client application, send it to the server, server

will check whether it is Armstrong or not and sends result accordingly to the client.

3. Write a java program to send “Hi” message to the Server.

4. Write a java program to accept a user name in client application and greets to the user

according to the time on server machine.

5. Write a java program to accept a string in client application and display the vowels from

that string on server terminal.

Set B:

1. Write a java program for standalone chatting application.

2. Write a java program to accept a filename in client application and check whether it is

available on server machine or not, if it there then display its contents on client’s terminal

otherwise display the message “File Not Found”. (Write Client and Server application on

different terminals.)

3. Write a java program to accept a number in client application, send it to the server, server

will calculates its factors and display them on the client terminal. (Each factor should

display after 2 seconds). Write Client and Server application on different terminals.

Set C:

1. Write a java program for chatting application. (Use Swing for GUI). (Write Client and

Server application on different terminals).

2. Write a java program to send and receive the messages from multiple terminals.

3. Write a java program to share a file on server machine between multiple clients.

Assignment Evaluation:

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: WellDone []

Signature of Instructor

4. Servlet and JSP:

 Servlet is a server-side Java program that executes on tomcat web server.

 Servlet is a technology which is used to create a web application.

 Servlet is an API that provides many interfaces and classes including documentation.

 Servlet is an interface that must be implemented for creating any Servlet.

 Servlet is a class that extends the capabilities of the servers and responds to the incoming

requests. It can respond to any requests.

 Servlet is a web component that is deployed on the server to create a dynamic web page.

 Servlet is server side scripting language so it does not have main() method.

 Servlet application compiled by using javac compiler explicitly.

 For developing Servlet application in java following API’s must be imported:

o javax.servlet.*;

o javax.servlet.http.*;

o java.io.*

 There are two types Servlet:

 GenericServlet

 HttpServlet

 The GenericServlet and HttpServlet are the classes belongs to packages javax.servlet.*

and javax.servlet.http.*.

Life Cycle of Servlet

 The Servlet is a java program executed on tomcat web server. It can be created either by

inheriting GenericServlet or HttpServlet class.

 Servlet life cycle contains five steps:

Step 1: Loading of Servlet

 When the web server (e.g. Apache Tomcat) starts up, the servlet container deploys and

loads all the Servlet.

 Step 2: Creating instance of Servlet

 Once all the Servlet classes loaded, the servlet container creates instances of each servlet

class.

 Servlet container creates only one instance per Servlet and all the requests to the servlet

are executed on the same servlet instance.

 Step 3: Invoke init() Method

 Once all the servlet classes are instantiated, the init() method is invoked for each

instantiated servlet.

 This method initializes the servlet. There are certain init parameters that you can specify

in the deployment descriptor (web.xml) file.

 For example, if a servlet has value >=0 then its init() method is immediately invoked

during web container startup.

 The init() method is called only once during the life cycle of servlet.

 Step 4: Invoke service() Method

 Each time the web server receives a request for servlet, it creates a new thread that calls

service() method.

 If the servlet is GenericServlet then the request is served by the service() method.

 If the servlet is HttpServlet then service () method receives the request and dispatches it

to the correct handler method(POST or GET) based on the type of request.

 For example if it is a GET Request the service() method would dispatch the request to

the doGet() method by calling the doGet() method with request parameters. Similarly the

requests like POST, HEAD, PUT etc. are dispatched to the corresponding handlers

doPost(), doHead(), doPut() etc. by service() method of servlet.

 Step 5: Invoke destroy() Method

 When servlet container shuts down(this usually happens when we stop the web server), it

unloads all the Servlet and calls destroy() method for each initialized Servlet.

Methods of Servlet

Method Description

public void init(ServletConfig config) Initializes the Servlet. It is the life cycle

method of Servlet and invoked by the web

container only once.

public void service(ServletRequest

request, ServletResponse response)

Provides response for the incoming request.

It is invoked at each request by the web

container.

public void destroy() Is invoked only once and indicates that

Servlet is being destroyed.

public ServletConfig

getServletConfig()

Returns the object of ServletConfig.

public String getServletInfo() Returns information about Servlet such as

writer, copyright, version etc.

How Servlet Works?

There are three main terminology used in servlet:

 Web Server: It can handle HTTP Requests send by clients and responds the request with

an HTTP Response.

 Web Application (webapp): Webapp is an application developed by you to create a

servlet. It consist HTML, java, class, web.xml files.

 Web Container: It is also known as Servlet Container and Servlet Engine. It is a part of

Web Server that interacts with Servlets. This is the main component of Web Server that

manages the life cycle of Servlets.

Developing Servlet

1. Select C:\Program Files\Apache Software Foundation\ Tomcat 8.0\webapps\

 Create your own directory structure as mentioned below:

Servlet application Directory structure

2. Write a client side request application and save it into your web application folder with

.html extension.

 For Example: Accepting name from user.

 Save this file as “index.html”

 Note: In form tag the action parameter should be the Servlet “.class” file name.

<html>

<body>

<form method=post action="Demo">

Enter your Name<input type=text name="nm">

<input type=submit name=submit value=submit>

</form>

</body>

</html>

MY_WEBAPP

.html File WEB-INF Folder

classes Folder web.xml File

.java File .class File

3. The WEB-INF folder is a web information folder which holds the information about

your web application such as the .class file and deployment descriptor i.e. web.xml

<web-app>

 <servlet>

 <servlet-name> My_WEBAPP </servlet-name>

 <servlet-class>Demo</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name> My_WEBAPP </servlet-name>

 <url-pattern>/Demo</url-pattern>

 </servlet-mapping>

</web-app>

4. Now write the java program and save it in classes folder. Compile it and a “.class file”

will be generated.

Note: Classes folder must be represented in a small case letter.

The “.class file” very important here it is used in form tag of HTML file as well as in

web.xml for mapping

For Example: In the “.html” file we used “Demo” as class file name then we must create a

“Demo.java” servlet file.

 Java Servlet Program to accept name from user and display on browser.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Demo extends HttpServlet

{

public void doPost(HttpServletRequest request, HttpServletResponse response)

{

 try

 {

 response.setContentType ("text/html");

 // set the type of response given to client

 PrintWriter out = response.getWriter ();

 // For using println() to display output

 String name = request.getParameter ("nm"); //accepting

 input request from client (Note: nm is a variable from .html file)

 out.print("Hello "+name);

 out.close();

 }

 catch(Exception exp)

 {

 System.out.println (exp);

 }

 }

 }

 Save the above program in C:\Program Files\Apache Software

Foundation\Apache Tomcat 8.0.27\webapps\My_WEBAPP\WEB-INF\classes\. Compile

and a class file “Demo.class:” is generated.

Methods of ServletRequest

ServletRequest Methods Description

String getParameter(String name) Obtains the value of a parameter sent to the

servlet as part of a get or post request. The name

argument represents the parameter name.

Enumeration getParameterNames() Returns the names of all the parameters sent to the

servlet as part of a post request.

String[] getParameterValues(String

name)

For a parameter with multiple values, this method

Returns an array of strings containing the values

for a specified servlet parameter.

String getProtocol() Returns the name and version of the protocol the

request uses in the form

protocol/majorVersion.minorVersion, for

example, HTTP/1.

String getRemoteAddr() Returns the Internet Protocol (IP) address of the

client that sent the request.

String getRemoteHost() Returns the fully qualified name of the client that

sent the request.

int getServerPort() Returns the port number on which request was

received.

String getServerName() Returns the host name of the server that received

the request.

HttpServletRequest Methods

Cookie[] getCookies() Returns an array of Cookie objects stored on the

client by the server.

HttpSession getSession(boolean create) Returns an HttpSession object associated with the

client's current browsing session. This method can

create an HttpSession object (True argument)if

one does not already exist for the client.

String getServletPath() Returns the part of this request's URL that calls

the servlet.

String getMethod() Returns the name of the HTTP method with

which this request was made, for example, GET,

POST, or PUT.

String getQueryString() Returns the query string that is contained in the

request URL after the path.

String getPathInfo() Returns any extra path information associated

with the URL the client sent when it made this

request.

String getRemoteUser() Returns the login of the user making this request,

ifm the user has been authenticated, or null if the

user has not been authenticated.

ServletResponse Methods

OutputStream getOutputStream() Obtains a byte-based output stream for sending

binary data to the client.

PrintWriter getWriter() Obtains a character-based output stream for

sending text data (usually HTML formatted text)

to the client.

void setContentType(String type) Specifies the content type of the response to the

browser. The content type is also known as

MIME (Multipurpose Internet Mail Extension)

type of the data. For examples, "text/html",

"image/gif"etc.

String setContentLength(int len)

Sets the length of the content body in the response

In HTTP servlets, this method sets the HTTP

Content-Length header.

HttpServletResponse Methods

void addCookie(Cookie cookie) Used to add a Cookie to the header of the

response to the client.

void sendError(int ec) Sends an error response to the client using the

specified status.

void sendError(int ec, String msg) Sends an error response to the client using the

specified status code and descriptive message.

void sendRedirect (String url) Sends a temporary redirect response to the client

using the specified redirect location URL.

void setHeader(String name, String

value)

Sets a response header with the given name and

value.

To handle request and response in servlet java uses following methods:

1. service(ServletRequest obj,ServletResponse obj):

o This method is supported by GenericServlet class. This is a lifecycle method which get

automatically override by HttpServlet

2. public void doPost(HttpServletRequest request, HttpServletResponse response):

 This method is supported by HttpServlet class.

 This method throws IOException and ServletException.

 The doPost(request, response) method is executed when a web page is activated using a

click event(Example: button click, hyperlink).

3. public void doGet(HttpServletRequest request, HttpServletResponse response):

 This method is supported by HttpServlet class.

 This method throws IOException and ServletException

 The doGet(request, response) method is executed when a web page is activated or called

by specifying address (URL) in web browser’s address bar.

Solved Example:

1. Write a servlet application to display marksheet on to the browser.

Solution:

 Index.html

<html>

<body>

<form method="Get" action="Mark">

<pre>

 Seat No <input type="text" name="t1">

 Stud Name <input type="text" name="t2">

 Class <input type="text" name="t3">

 Total Marks <input type="text" name="t4">

 <input type="submit" value="Submit">

</pre>

</form>

</body>

</html>

web.xml

<web-app>

 <servlet>

 <servlet-name>Ass15B</servlet-name>

 <servlet-class>Mark</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Ass15B</servlet-name>

 <url-pattern>/Mark</url-pattern>

 </servlet-mapping>

</web-app>

 Mark.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Mark extends HttpServlet

{

 public void doGet(HttpServletRequest req,HttpServletResponse res) throws

IOException,ServletException

 {

 res.setContentType("text/html");

 PrintWriter pw=res.getWriter();

 String sno=req.getParameter("t1");

 String sn=req.getParameter("t2");

 String cn=req.getParameter("t3");

 int tm=Integer.parseInt(req.getParameter("t4"));

 int p=tm/6;

 String gd;

 if(p>=70)

 {

 gd="Dist";

 }

 else if(p>=60 && p<70)

 {

 gd="First";

 }

 else if(p>=50 && p<60)

 {

 gd="Second";

 }

 else if(p>=40 && p<50)

 {

 gd="Pass";

 }

 else

 gd="Fail";

 pw.println(“” + "Seat No " + sno);

 pw.println(” + "Stud Name " + sn);

 pw.println(“” + "Class Name " + cn);

 pw.println(“” + "Percentage " + p);

 pw.println(“” + "Grade " + gd);

 }

}

INTRODUCTION TO JSP

 JSP is Java Server Page, which is a dynamic web page and used to build dynamic websites.

 To run JSP, we need web server which can be tomcat provided by apache.

 JSP is dynamic file where as Html file is static. HTML cannot get data from database or

dynamic data.

 JSP can be interactive and communicate with database and controllable by programmer.

 It is saved by extension of .jsp. Each Java server page is compiled into a servlet before it can

be used. This is normally done when the first request to the JSP page is made.

 There is no need to compile jsp page it gets compiled implicitly by JSP Engine.

 For writing JSP application its delimiters are used: Starting Delimiter (<%) and ending

Delimiter(%>)

JSP Elements

A JSP contains three important types of elements:

1. JSP Directives:

 Directives are message to the JSP container that enable the programmer to specify page

setting to include content from other resources & to specify custom tag libraries for use in

a JSP.

 Syntax: <%@ name attribute1=”….”, attribute2=”…”…%>

 There are three types of Directives:

 a. Page Directive:

 The page directives specify global settings for the JSP in the JSP container.

There can be many page directives, provided that there is only one occurrence

of each attribute.

 Syntax: <%@ page attribute="value" %>

For example:

<%@ page

[language="java"]

[extends="package.class"]

[import="{package.class | package.*}, ..."] [session="true|false"]

[buffer="none|8kb|sizekb"] [autoFlush="true|false"]

[isThreadSafe="true|false"] [info="text"]

[errorPage="relativeURL"]

[contentType="mimeType [; charset=characterSet]" | "text/html ; charset=ISO-8859-1"

]

[isErrorPage="true|false"]

[pageEncoding="characterSet | ISO-8859-1"]

%>

 Program to display current Date.

<html>

<body>

<%@ page import="java.util.Date" %>

Today is: <%= new Date() %>

</body>

</html>

b. Include Directive:

 An include directive is used to include the contents of any resource it may be JSP file, HTML

file or text file.

 If we want to use any file in JSP file then we can use include directive.

 An include directive includes the original content of the included resource at page translation

time (the JSP page is translated only once so it will be better to include static resource).

 Syntax:<%@ include file="resourceName" %>

 Note: resourseName is any file which we want to use in current JSP file

Program to include welcome.html

<html>

<body>

<%@ include file="welcome.html" %>

Today is: <%= java.util.Calendar.getInstance ().getTime() %>

</body>

</html>

c. Taglib Directive:

 The JSP taglib directive is used to define a tag library that defines many tags.

 We use the TLD (Tag Library Descriptor) file to define the tags. In the custom tag section we

will use this tag so it will be better to learn it in custom tag.

 Syntax: <%@ taglib uri="uriofthetaglibrary" prefix="prefixoftaglibrary" %>

 For Example: In this example, we are using our tag named currentDate. To use this tag we

must specify the taglib directive so the container may get information about the tag.

Program to demonstrate taglib directive.

<html>

<body>

<%@ tagliburi="http://www.javatpoint.com/tags" prefix="mytag" %>

<mytag:currentDate/>

</body>

</html>

2. Scripting Elements:

 In JSP, java code can be written inside the jsp page using the scriptlet tag.

 The scripting elements provide the ability to insert java code inside the jsp.

 There are three types of scripting elements:

a. Declaration Tag:

 A declaration declares one or more variables or methods that you can use in Java code later

in the JSP file.

 Syntax: <%! Java declaration statements %>

 Example:

<%! private int count = 0; %>

<%! int i = 0; %>

b. Expressions Tag:

 An expression element contains a java expression that is evaluated, converted to a String, and

inserted where the expression appears in the JSP file.

 Syntax: <%= expression %>

 Example: Your name is <%= request.getParameter("name") %>

c. Scriptlet Tag:

 A scriptlet contains a set of java statements which is executed.

 A scriptlet can have java variable and method declarations, expressions, use implicit objects

and contain any other statement valid in java.

 Syntax: <% statements %>

Write a JSP Script to display Hello message to the User.

<html>

<body>

<form method=”Get” action=”Name.jsp”>

User Name <input type=”text” name=”username”>

<input type=”submit” value=”Submit”>

<%

String name = request.getParameter("userName");

out.println(“Hello “ + name);%>

Actions: Actions encapsulates functionally in predefined tags that programmers can

embedded in a JSP.

Implicit objects used in JSP:

 The implicit objects are system defined and can be used directly without declaring and

initializing.

Implicit Objects used in JSP

Implicit object Description

Application A javax.servlet.ServletContext object that represents the container

in which the JSP executes. It allows sharing information between

the jsp page's Servlet and any web components within the same

object.

 A javax.servlet.ServletConfig object that represents the JSP

Config configuration options. As with Servlet, configuration options can be

specified in a Web application descriptor (web.xml). The method

getInitParameter() is used to access the initialization parameters.

Exception A java.lang.Throwable object that represents an exception that is

passed to a JSP error page. This object is available only in a JSP

error page.

Out

A javax.servlet.jsp.JspWriter object that writes text as part of the

response to a request. This object is used implicitly with JSP

expressions and actions that insert string content in a response.

Page An Object that represents the current JSP instance.

pageContext A javax.servlet.jsp.PageContext object that provides JSP

programmers with access to the implicit objects discussed in this

table.

Request

An object that represents the client request and is normally an

instance of a class that implements HttpServletRequest. If a

protocol other than HTTP is used, this object is an instance of a

subclass of javax.servlet.Servlet-Request. It uses the getParameter()

method to access the request parameter.

Response

An object that represents the response to the client and is normally an

instance of a class that implements HttpServletResponse (package

javax.servlet.http). If a protocol other than HTTP is used, this object is an

instance of a class that implements javax.servlet.ServletResponse.

Session A javax.servlet.http.HttpSession object that represents the client session

information. This object is available only in pages that participate in a

session.

Solved Examples:

1. Write a JSP application to check whether given mail ID is valid or not.

Solution:
 Index.html

<html>

<body>

<form method="Get" action="AssVal.jsp">

Enter EMail ID <input type="text" name="t1">

<input type="submit" value="Submit">

</form>

</body>

</html>

 AssVal.jsp

<%

 String em;

 int i,l,scnt=0,dcnt=0;

 char ch;

 em=request.getParameter("t1");

 l=em.length();

 for(i=0;i<l;i++)

 {

 ch=em.charAt(i);

 if(ch=='.')

 {

 dcnt++;

 }

 if(ch=='@')

 {

 scnt++;

 }

 }

 if(dcnt==0)

 {

 out.println("Invalid....It does not contain Dot(.)");

 }

 else if(scnt>1 || scnt<1)

 {

 out.println("It does not have @ symbol or more than one @

symbol");

 }

 else

 out.println("Valid Email Id " + em);

 %>

2. Write a JSP Application to accept nick name and Name from a user, If visit count is even then
display name otherwise display nickname.
Solution:

 Index.html

<html>

<body>

<form method="Get" action="NickName.jsp">

<pre>

 Name <input type="text" name="t1">

 Nick Name <input type="text" name="t2">

 <input type="submit" value="Submit">

</pre>

</form>

</body>

</html>

NickName.jsp

<%! static int cnt;%>

<%

 String nm,nk;

 nm=request.getParameter("t1");

 nk=request.getParameter("t2");

 cnt++;

 if(cnt%2==0)

 out.println(nk);

 else

 out.println(nm);

%>

Set A

a) Design a servlet that provides information about a HTTP request from a client, such

 as IP address and browser type. The servlet also provides information about the server

 on which the servlet is running, such as the operating system type, and the names of

 currently loaded servlets.

b) Write a Program to make use of following JSP implicit objects:

i. out: To display current Date and Time.

ii. request: To get header information.

iii. response: To Add Cookie

iv. config: get the parameters value defined in <init-param>

v. application: get the parameter value defined in <context-param>

vi. session: Display Current Session ID

vii. pageContext: To set and get the attributes.

viii. page: get the name of Generated Servlet

c) Write a Servlet application to display Hello Java Message on the Browser.

d) Write a JSP script to display all the prime number’s between 1 to n in Red Color.

e) Write a JSP application to accept the details of Emp (Eno, EName, Salary) and display

it in Tabular format on the browser.

Set B

a) Design an HTML page which passes customer number to a search servlet. The servlet

 searches for the customer number in a database (customer table) and returns customer

 details if found the number otherwise display error message.

b) Design an HTML page containing option buttons (Maths, Physics, Chemistry and

 Biology) and buttons submit and reset. When the user clicks submit, the server

 responds by adding a cookie containing the selected subject and sends a message back

 to the client. Program should not allow duplicate cookies to be written.

c) Write a Servlet program to display the details of PATIENT (PatientNo, PatientName,

 PatientAddress, Patientage, PatientDiease) in tabular form on browser.

d) Write a JSP application to accept a user name and greets to the user according to the

system Time.

e) Write a Servlet program for the implementation of session tracking.

Set C

a) Create a JSP page for an online multiple choice test. The questions are randomly

 selected from a database and displayed on the screen. The choices are displayed

 using radio buttons. When the user clicks on next, the next question is displayed.

 When the user clicks on submit, display the total score on the screen.

b) Write a program to create an Online Book purchase. User must be login and then

 purchase the book. Each page should have a page total. The last page should display a

 total book and bill, which consists of a page total of whatever the purchase has been

 done and print the total. (Use HttpSession)

c). Write a JSP application to accept the details of Teacher (TID, TName, Salary) and

display it in tabular format.

Assignment Evaluation:

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: WellDone []

Signature of Instructor

5 Spring and Hibernate

What is Spring?

Spring is an open source framework created to address the complexity of enterprise

application development. Spring is a very lightweight framework which provides well-defined

infrastructure support for developing Java application.

Why Spring?

Spring is considered to be a secure, low-cost and flexible framework. Spring improves coding

efficiency and reduces overall application development time because it is lightweight and

efficient at utilizing system resources. Spring removes tedious configuration work so that

developers can focus on writing program logic. Spring handles the infrastructure so

developers can focus on the application.

Spring Framework

The Spring Framework is one of the most popular Java-based application Frameworks. It is

an application framework and Inversion of Control (IoC) container for the Java platform. The

Spring Framework is a mature, powerful and highly flexible framework focused on building

Web applications in Java. The Spring Framework provides a comprehensive programming

and configuration model for modern Java-based enterprise applications - on any kind of

deployment platform.

Spring Module

JDBC Module: This module provides the JDBC abstraction layer and helps to avoid tedious

JDBC coding.

ORM Module: This module provides integration for object relational mapping APIs such as

JPA, Hibernate, JDO, etc.

JMS (Java Messaging Service) Module: This module contains features for producing and

consuming messages.

OXM Module: This module provides Object/XML binding.

Transaction Module: This model supports programmatic and declarative transaction

management for classes that implement special interfaces and for all the POJOs.

Spring MVC

Model: A model contains the data of the application. A data can be a single object or a

collection of objects. The Model encapsulates the application data and in general they will

consist of POJO.

View: View is responsible for presenting data to the end user. A view represents the provided

information in a particular format. The View is responsible for rendering the model data and

in general it generates HTML output that the client's browser can interpret.

Controller: The controller is a logic that is responsible for processing and acting on user

requests. The Controller is responsible for processing user requests and building an

appropriate model and passes it to the view for rendering.

Annotations of Spring MVC

Annotation Description

@Controller : It represents the controller class

@RequestMapping: It can be used for the mapping of incoming requests.

@GetMapping : It is used to map HTTP Get requests.

@PostMapping : It is used to map HTTP Post requests.

@RequestParam : It reads the HTML form data.

@ModelAttribute : This annotation accesses elements present

Spring MVC Validation Annotations

Annotation Description

@NotNull : Checks that the annotated value is not null.

@Min: Must be a number >=value

@Max: Must be a number <=value

@Size : Total no of characters must match the given size.

@Pattern: Must match a regular expression pattern.

@Future : Date must be in the future of the given date.

@Past: Date must be in the past of the given date.

pom.xml

It stands for Project Object Model. POM is a fundamental unit of work in Maven.

Project Object Model (POM) is a XML file that contains information about the project and

configuration details used by Maven to build the project. When executing a task, Maven

looks for the POM in the current directory. It reads the POM, gets the required configuration

and information, then executes the goal. Configurations specified in the POM are the

project dependencies, the plugins or goals that can be executed, the build project.

Download the Spring Tool Suits 4 for that follow the link https://spring.io/tools

Example

Step 1: Create Java Project: The first step is to lunch the workspace and then create a

simple spring starter project. Follow the option File → New → Spring Starter Project and

finally select Java Project wizard from the wizard list. Lunch workspace window as

shown in Fig.

Now name the project as SpringCore is created successfully.

Step 2: Add Required Libraries: As a second step let us add Spring Framework and

common logging API libraries in our project. To do this, right-click on the project name

springcore and then follow the following option available in the context menu − Build

Path - Configure Build Path to display the Java Build Path window.

Now use Add External JARs button available under the Libraries tab to add the following

core JARs from Spring Framework and Common Logging installation directories:

 commons-logging-1.1.1

 spring-aop-4.1.6.RELEASE

 spring-aspects-4.1.6.RELEASE

 spring-beans-4.1.6.RELEASE

 spring-context-4.1.6.RELEASE

 spring-context-support-4.1.6.RELEASE

 spring-core-4.1.6.RELEASE

 spring-expression-4.1.6.RELEASE

 spring-instrument-4.1.6.RELEASE

 spring-instrument-tomcat-4.1.6.RELEASE

 spring-jdbc-4.1.6.RELEASE

 spring-jms-4.1.6.RELEASE

 spring-messaging-4.1.6.RELEASE

 spring-orm-4.1.6.RELEASE

 spring-oxm-4.1.6.RELEASE

 spring-test-4.1.6.RELEASE

 spring-tx-4.1.6.RELEASE

 spring-web-4.1.6.RELEASE

 spring-webmvc-4.1.6.RELEASE

 spring-webmvc-portlet-4.1.6.RELEASE

 spring-websocket-4.1.6.RELEASE

Step 3: Create Source Files: Now let us create actual source files under the SpringCore

project. First we need to create a package called springcore.

Example: To do this, right click on src in package explorer section and follow the option − New

Package. Next we will create HelloBean.java and Main.java files.

Here is the content of HelloBean.java file:

package springcore.example;

public class HelloBean

{

private String name;

public String getName()

{

return name;

}

public void setName(String name)

{

this.name = name;

}

public void sayHello()

{

System.out.println("Hello" + this.name);

}

}

Content of the second file Main.java

//Main.java

package springcore.example;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Main

{

private static ApplicationContext context;

public static void main(String[] args)

{

context = new ClassPathXmlApplicationContext("beans.xml");

HelloBean helloBean = (HelloBean) context.getBean("HelloBean");

helloBean.sayHello();

}

}

Step 4: Create Bean Configuration File: We need to create a Bean Configuration file which

is an XML file and acts as cement that glues the beans, i.e. the classes together. This file

needs to be created under the src directory (Src/main/resources) beans.xml.

Usually developers name this file as Beans.xml, but we are independent to choose any

name we like.

//beans.xml

<beansxmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"

xmlns:p="http://www.springframework.org/schema/p"

xmlns:aop="http://www.springframework.org/schema/aop"xmlns:context="http://ww

w.springframework.org/schema/context"

xmlns:jee="http://www.springframework.org/schema/jee"xmlns:tx="http://www.sprin

gframework.org/schema/tx"

xmlns:task="http://www.springframework.org/schema/task"

xsi:schemaLocation="http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-3.2.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.2.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.2.xsd

http://www.springframework.org/schema/jee

http://www.springframework.org/schema/jee/spring-jee-3.2.xsd

http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-3.2.xsd

http://www.springframework.org/schema/task

http://www.springframework.org/schema/task/spring-task-3.2.xsd">

<context:component-scanbase-package="springcore.examples"/>

<bean id="HelloBean"class="springcore.example.HelloBean">

<propertyname="name"value="Spring Programe"/>

</bean>

//pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>springcore_example</groupId>

<artifactId>SpringCoreExample</artifactId>

<version>0.0.1-SNAPSHOT</version>

<!-- JDK 8 configuration below -->

<properties>

<spring.version>3.2.3.RELEASE</spring.version>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

</properties>

<!-- completed -->

<dependencies>

<dependency>

<groupId>org.springframework</groupId>

<artifactId>spring-core</artifactId>

<version>${spring.version}</version>

</dependency>

<dependency>

<groupId>org.springframework</groupId>

<artifactId>spring-context</artifactId>

<version>${spring.version}</version>

</dependency>

</dependencies>

</project>

Step 5: Running the Program: Once we are done with creating the source and beans

configuration files, we are ready for this step, which is compiling and running the

program. To do this, keep Main.java file tab active and use either Run option. If

everything is fine with the application, this will print the following message in console.

Hibernate:

 Hibernate Framework

Hibernate is a Java framework that simplifies the development of Java application to interact

with the database. It is an open source, lightweight, ORM (Object Relational Mapping) tool.

Hibernate implements the specifications of JPA (Java Persistence API) for data persistence.

ORM Tool

An ORM tool simplifies the data creation, data manipulation and data access. It is a

programming technique that maps the object to the data stored in the database.

The ORM tool internally uses the JDBC API to interact with the database.

What is JPA?

Java Persistence API (JPA) is a Java specification that provides certain functionality and

standard to ORM tools. The javax.persistence package contains the JPA classes and interfaces.

The Hibernate architecture includes many objects such as persistent object, session factory,

transaction factory, connection factory, session, transaction etc.

The Hibernate architecture is categorized in four layers.

o Java application layer

o Hibernate framework layer

o Backhand api layer

o Database layer

Hibernate framework uses many objects such as session factory, session, transaction etc.

alongwith existing Java API such as JDBC (Java Database Connectivity), JTA (Java Transaction

API) and JNDI (Java Naming Directory Interface).

Elements of Hibernate Architecture

For creating the first hibernate application, we must know the elements of Hibernate

architecture. They are as follows:

SessionFactory

The SessionFactory is a factory of session and client of ConnectionProvider. It holds second

level cache (optional) of data. The org.hibernate.SessionFactory interface provides factory

method to get the object of Session.

Session

The session object provides an interface between the application and data stored in the database.

It is a short-lived object and wraps the JDBC connection. It is factory of Transaction, Query and

Criteria. It holds a first-level cache (mandatory) of data. The org.hibernate.Session interface

provides methods to insert, update and delete the object. It also provides factory methods for

Transaction, Query and Criteria.

Transaction

The transaction object specifies the atomic unit of work. It is optional. The

org.hibernate.Transaction interface provides methods for transaction management.

ConnectionProvider

It is a factory of JDBC connections. It abstracts the application from DriverManager or

DataSource. It is optional.

TransactionFactory

It is a factory of Transaction. It is optional.

First Hibernate Example without IDE

Here, we are going to create the first hibernate application without IDE. For creating the first

hibernate application, we need to follow the following steps:

1. Create the Persistent class

2. Create the mapping file for Persistent class

3. Create the Configuration file

4. Create the class that retrieves or stores the persistent object

5. Load the jar file

6. Run the first hibernate application by using command prompt

1) Create the Persistent class

A simple Persistent class should follow some rules:

o A no-arg constructor: It is recommended that you have a default constructor at least

package visibility so that hibernate can create the instance of the Persistent class by

newInstance() method.

o Provide an identifier property: It is better to assign an attribute as id. This attribute

behaves as a primary key in database.

o Declare getter and setter methods: The Hibernate recognizes the method by getter and

setter method names by default.

o Prefer non-final class: Hibernate uses the concept of proxies, that depends on the

persistent class. The application programmer will not be able to use proxies for lazy

association fetching.

Let's create the simple Persistent class:

Employee.java

package com.javatpoint.mypackage;

public class Employee {

private int id;

private String firstName,lastName;

public int getId() {

 return id;

}

public void setId(int id) {

 this.id = id;

}

public String getFirstName() {

 return firstName;

}

public void setFirstName(String firstName) {

 this.firstName = firstName;

}

public String getLastName() {

 return lastName;

}

public void setLastName(String lastName) {

 this.lastName = lastName;

}

}

2) Create the mapping file for Persistent class

The mapping file name conventionally, should be class_name.hbm.xml. There are many

elements of the mapping file.

 hibernate-mapping : It is the root element in the mapping file that contains all the

mapping elements.

 class : It is the sub-element of the hibernate-mapping element. It specifies the Persistent

class.

 id : It is the subelement of class. It specifies the primary key attribute in the class.

 generator : It is the sub-element of id. It is used to generate the primary key. There are

many generator classes such as assigned, increment, hilo, sequence, native etc. We will

learn all the generator classes later.

 property : It is the sub-element of class that specifies the property name of the Persistent

class.

Let's see the mapping file for the Employee class:

employee.hbm.xml

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE hibernate-mapping PUBLIC

 "-//Hibernate/Hibernate Mapping DTD 5.3//EN"

 "http://hibernate.sourceforge.net/hibernate-mapping-5.3.dtd">

 <hibernate-mapping>

 <class name="com.javatpoint.mypackage.Employee" table="emp1000">

 <id name="id">

 <generator class="assigned"></generator>

 </id>

 <property name="firstName"></property>

 <property name="lastName"></property>

 </class>

</hibernate-mapping>

3) Create the Configuration file

The configuration file contains information about the database and mapping file. Conventionally,

its name should be hibernate.cfg.xml .

hibernate.cfg.xml

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE hibernate-configuration PUBLIC

 "-//Hibernate/Hibernate Configuration DTD 5.3//EN"

 "http://hibernate.sourceforge.net/hibernate-configuration-5.3.dtd">

 <hibernate-configuration>

 <session-factory>

 <property name="hbm2ddl.auto">update</property>

 <property name="dialect">org.hibernate.dialect.Oracle9Dialect</property>

 <property name="connection.url">jdbc:oracle:thin:@localhost:1521:xe</property>

 <property name="connection.username">system</property>

 <property name="connection.password">jtp</property>

 <property name="connection.driver_class">oracle.jdbc.driver.OracleDriver</proper

ty>

 <mapping resource="employee.hbm.xml"/>

 </session-factory>

</hibernate-configuration>

4) Create the class that retrieves or stores the object

In this class, we are simply storing the employee object to the database.

package com.javatpoint.mypackage;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.hibernate.Transaction;

import org.hibernate.boot.Metadata;

import org.hibernate.boot.MetadataSources;

import org.hibernate.boot.registry.StandardServiceRegistry;

import org.hibernate.boot.registry.StandardServiceRegistryBuilder;

public class StoreData {

public static void main(String[] args) {

 //Create typesafe ServiceRegistry object

StandardServiceRegistry ssr = new StandardServiceRegistryBuilder().configure("hiberna

te.cfg.xml").build();

 Metadata meta = new MetadataSources(ssr).getMetadataBuilder().build();

 SessionFactory factory = meta.getSessionFactoryBuilder().build();

 Session session = factory.openSession();

 Transaction t = session.beginTransaction();

 Employee e1=new Employee();

 e1.setId(101);

 e1.setFirstName("Gaurav");

 e1.setLastName("Chawla");

 session.save(e1);

 t.commit();

 System.out.println("successfully saved");

 factory.close();

 session.close();

 }

}

5) Load the jar file

For successfully running the hibernate application, you should have the hibernate5.jar file.

Download the required jar files for hibernate

How to run the first hibernate application without IDE

We may run this hibernate application by IDE (e.g. Eclipse, Myeclipse, Netbeans etc.) or without

IDE.

To run the hibernate application without IDE:

o Install the oracle10g for this example.

o Load the jar files for hibernate. (One of the way to load the jar file is copy all the jar files

under the JRE/lib/ext folder). It is better to put these jar files inside the public and private

JRE both.

o Now, run the StoreData class by java com.javatpoint.mypackage.StoreData

Hibernate Example using XML in Eclipse

Here, we are going to create a simple example of hibernate application using eclipse IDE. For

creating the first hibernate application in Eclipse IDE, we need to follow the following steps:

1. Create the java project

2. Add jar files for hibernate

3. Create the Persistent class

4. Create the mapping file for Persistent class

5. Create the Configuration file

6. Create the class that retrieves or stores the persistent object

7. Run the application

https://www.javatpoint.com/src/hb/hibernatejar.zip

1) Create the java project

Create the java project by File Menu - New - project - java project . Now specify the

project

name e.g. firsthb then next - finish .

2) Add jar files for hibernate

To add the jar files Right click on your project - Build path - Add external archives.

Now select all the jar files as shown in the image given below then click open.

In this example, we are connecting the application with oracle database. So you must add the

ojdbc14.jar file.

download the ojdbc14.jar file

3) Create the Persistent class

Here, we are creating the same persistent class which we have created in the previous topic. To

create the persistent class, Right click on src - New - Class - specify the class with package

name (e.g. com.javatpoint.mypackage) - finish .

https://www.javatpoint.com/src/jdbc/ojdbc14.jar

Employee.java

package com.javatpoint.mypackage;

public class Employee {

private int id;

private String firstName,lastName;

public int getId()

{

 return id;

}

public void setId(int id) {

 this.id = id;

}

public String getFirstName()

{

 return firstName;

}

public void setFirstName(String firstName)

{

 this.firstName = firstName;

}

public String getLastName()

{

 return lastName;

}

public void setLastName(String lastName)

 {

 this.lastName = lastName;

}

}

4) Create the mapping file for Persistent class

Here, we are creating the same mapping file as created in the previous topic. To create

the mapping file, Right click on src - new - file - specify the file name (e.g. employee.hbm.xml)

- ok. It must be outside the package.

employee.hbm.xml

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE hibernate-mapping PUBLIC

 "-//Hibernate/Hibernate Mapping DTD 5.3//EN"

 "http://hibernate.sourceforge.net/hibernate-mapping-5.3.dtd">

 <hibernate-mapping>

 <class name="com.javatpoint.mypackage.Employee" table="emp1000">

 <id name="id">

 <generator class="assigned"></generator>

 </id>

 <property name="firstName"></property>

 <property name="lastName"></property>

 </class>

 </hibernate-mapping>

5) Create the Configuration file

The configuration file contains all the information’s for the database such as connection_url,

driver_class, username, password etc. The hbm2ddl.auto property is used to create the table in

the database automatically. We will have in-depth learning about Dialect class in next topics. To

create the configuration file, right click on src - new - file. Now specify the configuration file

name e.g. hibernate.cfg.xml.

hibernate.cfg.xml

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE hibernate-configuration PUBLIC

 "-//Hibernate/Hibernate Configuration DTD 5.3//EN"

 "http://hibernate.sourceforge.net/hibernate-configuration-5.3.dtd">

<hibernate-configuration>

 <session-factory>

 <property name="hbm2ddl.auto">update</property>

 <property name="dialect">org.hibernate.dialect.Oracle9Dialect</property>

 <property name="connection.url">jdbc:oracle:thin:@localhost:1521:xe</property>

 <property name="connection.username">system</property>

 <property name="connection.password">oracle</property>

 <property name="connection.driver_class">oracle.jdbc.driver.OracleDriver</proper

ty>

 <mapping resource="employee.hbm.xml"/>

 </session-factory>

 </hibernate-configuration>

6) Create the class that retrieves or stores the persistent object

In this class, we are simply storing the employee object to the database.

package com.javatpoint.mypackage;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.hibernate.Transaction;

import org.hibernate.boot.Metadata;

import org.hibernate.boot.MetadataSources;

import org.hibernate.boot.registry.StandardServiceRegistry;

import org.hibernate.boot.registry.StandardServiceRegistryBuilder;

public class StoreData {

public static void main(String[] args)

{

StandardServiceRegistry ssr = new StandardServiceRegistryBuilder().configure("hiberna

te.cfg.xml").build();

Metadata meta = new MetadataSources(ssr).getMetadataBuilder().build();

SessionFactory factory = meta.getSessionFactoryBuilder().build();

Session session = factory.openSession();

Transaction t = session.beginTransaction();

Employee e1=new Employee();

e1.setId(1);

e1.setFirstName("Gaurav");

e1.setLastName("Chawla");

session.save(e1);

t.commit();

System.out.println("successfully saved");

factory.close();

session.close();

 }

}

7) Run the application

Before running the application, determine that directory structure is like this.

To run the hibernate application, right click on the StoreData class - Run As - Java

Application.

Set A

a) Create a Spring core example to display the message “DYPIAN”.

b) Write a program to display the Current Date using spring.

c). Write a Hibernate application to display “Hello” message.

Set B

a) Design a Spring application for accepting student information like Student_id, Student_Name

and Student_Age.

b) Design an Employee login form application using spring form MVC validation.

Assignment Evaluation:

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: WellDone []

Signature of Instructor

Section II: Android

1

Assignment 1: Introduction to Android

Objectives

• Study Android Studio installation.

• Create basic android application.

Reading

 You should read the following topics before starting this exercise:

1. Installing Android Studio

2. Create "Hello World" application

3. Explore the project structure

4. The Gradle build system

5. Create a virtual device (emulator)

6. Run your app on an emulator

7. Android Architecture

1. Installing Android Studio

1) Install Java JDK: Get the latest version. The JDK may be downloaded here

https://www.oracle.com/java/technologies/downloads/#java8

2) Install Android Studio bundle. Use the latest stable version. Android Studio may be downloaded here:

https://developer.android.com/studio

3) Follow the prompts to complete the installation. I used the default settings.

4) Allow Android Studio access to the network.

5) Select your desired UI theme.

6) Android Studio will download additional components. This will take several minutes.

7) Select ―Configure/SDK Manager.

8) Deselect All. Scroll down and select ―Android 8.1 (API 27) Install the packages.

https://www.oracle.com/java/technologies/downloads/#java8

2

2. Create "Hello World" application

1. In the Welcome to Android Studio window, click Create New Project. (If you have a project already

opened, select File > New > New Project.)

2. In the Select a Project Template window, select Empty Activity and click Next.

3. In the Configure your project window, complete the following:

a. Enter "MyFirstApp" in the Name field.

b. Enter "com.example.myfirstapp" in the Package name field.

c. If you'd like to place the project in a different folder, change its Save location.

d. Select either Java or Kotlin from the Language drop-down menu.

e. Select the lowest version of Android you want your app to support in the Minimum SDK field.

f. Leave the other options as they are.

4. Click Finish.

3

5. After some processing time, the Android Studio main window appears.

\
3. Explore the project structure

In the Project > Android view of your previous task, there are three top-level folders below your app folder:

manifests, java, and res.

1. Expand the manifests folder.

This folder contains AndroidManifest.xml. This file describes all of the components of your Android app

and is read by the Android run-time system when your program is executed.

2. Expand the java folder.

All your Java language files are organized in this folder. The java folder contains three subfolders:

• com.example.hello.helloworld (or the domain name you have specified): All the files for a package

are in a folder named after the package. For your Hello World application, there is one package and it

only contains MainActivity.java (the file extension may be omitted in the Project view).

• com.example.hello.helloworld(androidTest): This folder is for your instrumented tests, and starts

out with a skeleton test file.

• com.example.hello.helloworld(test): This folder is for your unit tests and starts out with an

automatically created skeleton unit test file.

3. Expand the res folder.

This folder contains all the resources for your app, including images, layout files, strings, icons, and styling.

It includes these subfolders:

• drawable: Store all your app's images in this folder.

• layout: Every activity has at least one layout file that describes the UI in XML. For Hello World, this

folder contains activity_main.xml.

• mipmap: Store your launcher icons in this folder. There is a sub-folder for each supported screen

density. Android uses the screen density, that is, the number of pixels per inch to determine the

required image resolution. Android groups all actual screen densities into generalized densities, such

as medium (mdpi), high (hdpi), or extra-extra-extra-high (xxxhdpi). The ic_launcher.png folder

contains the default launcher icons for all the densities supported by your app.

• values: Instead of hard coding values like strings, dimensions, and colors in your XML and Java files,

it is best practice to define them in their respective values file. This makes it easier to change and be

4

consistent across your app. Expand the values subfolder within the res folder. It includes these

subfolders:

o colors.xml: Shows the default colors for your chosen theme, and you can add your own colors

or change them based on your app's requirements.

o dimens.xml: Store the sizes of views and objects for different resolutions.

o strings.xml: Create resources for all your strings. This makes it easy to translate them to other

languages.

o styles.xml: All the styles for your app and theme go here. Styles help give your app a

consistent look for all UI elements.

4. The Gradle build system:

Android Studio uses Gradle as its build system. As you progress through these practicals, you will learn more

about gradle and what you need to build and run your apps.

1. Expand the Gradle Scripts folder. This folder contains all the files needed by the build system.

2. Look for the build.gradle(Module:app) file. When you are adding app-specific dependencies,

such as using additional libraries, they go into this file

5. Create a virtual device (emulator)

In this task, you will use the Android Virtual Device (AVD) manager to create a virtual device or emulator

that simulates the configuration for a particular type of Android device. Using the AVD Manager, you define

the hardware characteristics of a device and its API level, and save it as a virtual device configuration. When

you start the Android emulator, it reads a specified configuration and creates an emulated device that behaves

exactly like a physical version of that device, but it resides on your computer. With virtual devices, you can

test your apps on different devices (tablets, phones) with different API levels to make sure it looks good and

works for most users. You do not need to depend on having a physical device available for app development.

In order to run an emulator on your computer, you have to create a configuration that describes the virtual

device.

o In Android Studio, select Tools > AVD Manager, or click the AVD Manager icon in the toolbar.

o Click the +Create Virtual Device…. (If you have created a virtual device before, the window

shows all of your existing devices and the button is at the bottom.) The Select Hardware screen

appears showing a list of preconfigured hardware devices. For each device, the table shows its

diagonal display size (Size), screen resolution in pixels (Resolution), and pixel density (Density).

o Choose which version of the Android system to run on the virtual device. You can select the latest

system image. There are many more versions available than shown in the recommended tab.

o If a Download link is visible next to a system image version, it is not installed yet, and you need to

download it. If necessary, click the link to start the download, and click Finish when it's done.

o On System Image screen, choose a system image and click Next.

o Verify your configuration, and click Finish. (If the Your Android Devices AVD Manager window

stays open, you can go ahead and close it.)

6. Run your app on an emulator

1) In Android Studio, select Run > Run app or click the Run icon in the toolbar.

2) In the Select Deployment Target window, under Available Emulators, select Pixel API 27 and click

OK

3) You should see the Hello World app as shown in the following screenshot.

7. Android Architecture

Android architecture or Android software stack is categorized into five parts:

1. Linux kernel

5

2. Native libraries (middleware),

3. Android Runtime

4. Application Framework

5. Applications

1) Linux kernel

It is the heart of android architecture that exists at the root of android architecture. Linux kernel is responsible

for device drivers, power management, memory management, device management and resource access.

2) Native Libraries

On the top of Linux kernel, there are Native libraries such as WebKit, OpenGL, FreeType, SQLite, Media,

C runtime library (libc) etc. The WebKit library is responsible for browser support. SQLite is for database.

FreeType for font support, Media for playing and recording audio and video formats.

3) Android Runtime

In android runtime, there are core libraries and DVM (Dalvik Virtual Machine) which is responsible to run

android application. DVM is like JVM but it is optimized for mobile devices. It consumes less memory and

provides fast performance.

4) Android Framework

On the top of Native libraries and android runtime, there is android framework. Android framework

includes Android API's such as UI (User Interface), telephony, resources, locations, Content Providers (data)

and package managers. It provides a lot of classes and interfaces for android application development.

5) Applications

On the top of android framework, there are applications. All applications such as home, contact, settings,

games, browsers are using android framework that uses android runtime and libraries. Android runtime and

native libraries are using Linux kernel.

Assignment 2 : Layout, Activity and Intent

Objectives

• To study how to use Activities, Layouts and Intents in the application.

6

• To study different layout in an Android.

• To study how to link Activities and interaction between Intent.

Reading

You should read the following topics before starting this exercise:

• Android - UI Layouts

• Activity, Activity Lifecycle

• Linking Activities using Intent.

Ready Reference

1) Android - UI Layouts

A layout defines the structure for a user interface in our app, such as in an activity. All elements in the

layout are built using a hierarchy of View and ViewGroup objects. A View usually draws something

the user can see and interact with. Whereas a View Group is an invisible container that defines the

layout structure for View and other ViewGroup objects.

The View objects are usually called

"widgets" and can be one of many

subclasses, such as Button or TextView.

The ViewGroup objects are usually called

"layouts" can be one of many types that

provide a different layout structure, such

as LinearLayout or ConstraintLayout .

There are number of Layouts provided by

Android which we will use in almost all the Android applications to provide different view, look and

feel and they are...

LinearLayout:

Android LinearLayout is a view group that aligns
all children in a single direction either vertically

or horizontally.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">
 <TextView android:id="@+id/text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This is a TextView"/>

 <Button android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This is a Button"/>
<EditText
android:id="@+id/edtPainText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

android:text="This is a EditText"/>
 <!-- More GUI components go here -->
</LinearLayout>

RelativeLayout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

7

Android RelativeLayout enables you to specify
how child views are positioned relative to each
other. The position of each view can be specified
as relative to sibling elements or relative to the
parent. Using RelativeLayout, you can align two

elements by right border, or make one below
another, centered in the screen, centered left, and
so on. By default, all child views are drawn at the
top-left of the layout.

 android:paddingLeft="16dp"
 android:paddingRight="16dp" >
 <EditText
 android:id="@+id/name"
 android:layout_width="match_parent"

 android:layout_height="wrap_content"
 android:hint="@string/reminder" />
 <Spinner android:id="@+id/dates"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_below="@id/name"
 android:layout_alignParentLeft="true"
 android:layout_toLeftOf="@+id/times" />

 <Spinner android:id="@id/times"
 android:layout_width="96dp"
 android:layout_height="wrap_content"
 android:layout_below="@id/name"
 android:layout_alignParentRight="true" />
 <Button android:layout_width="96dp"
 android:layout_height="wrap_content"

 android:layout_below="@id/times"
 android:layout_alignParentRight="true"
 android:text="@string/done" />
</RelativeLayout>

TableLayout :

Android TableLayout going to be arranged
groups of views into rows and columns. You will
use the <TableRow> element to build a row in the
table. Each row has zero or more cells; each cell
can hold one View object,

like ImageView, TextView or any other view.
For building a row in a table you will use
the <TableRow> element. Table row objects are
the child views of a table layout. Total width of a
table is defined by its parent container. Column
can be both stretchable and shrinkable. If
shrinkable then the width of column can be

shrunk to fit the table into its parent object and if
stretchable then it can expand in width to fit any
extra space available.

<TableLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
 <TableRow android:layout_width="fill_parent"
android:layout_height="fill_parent">
 <TextView android:text="First Name"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:layout_column="1"/>
<EditText android:width="200px"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>
 </TableRow>
 <TableRow

android:layout_width="fill_parent"
android:layout_height="fill_parent">
 <Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
 android:text="Submit"
 android:id="@+id/button"

 android:layout_column="2"/>
</TableRow>
</TableLayout>

AbsoluteLayout:

In Android, an Absolute Layout is a layout used
to design the custom layouts. An Absolute Layout

<AbsoluteLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button android:layout_width="100dp"

https://abhiandroid.com/ui/imageview/
https://abhiandroid.com/ui/textview/

8

lets you specify exact locations (x/y coordinates)
of its children. Absolute layouts are less flexible
and harder to maintain than other types of layouts
without absolute positioning

 android:layout_height="wrap_content"
 android:text="OK"
 android:layout_x="50px"
 android:layout_y="361px"/>
 <Button android:layout_width="100dp"

 android:layout_height="wrap_content"
 android:text="Cancel"
android:layout_x="225px" android:layout_y="361px"/>
</AbsoluteLayout>

FrameLayout :

Frame Layout is designed to block out an area on
the screen to display a single item. Generally,
FrameLayout should be used to hold a single
child view, because it can be difficult to organize
child views in a way that's scalable to different
screen sizes without the children overlapping
each other. You can, however, add multiple

children to a FrameLayout and control their
position within the FrameLayout by assigning
gravity to each child, using the
android:layout_gravity attribute.

ConstraintLayout :

Android Constraint Layout is a ViewGroup (i.e. a view that
holds other views) which allows you to create large and
complex layouts with a flat view hierarchy, and also allows
you to position and size widgets in a very flexible way. It was
created to help reduce the nesting of views and also improve
the performance of layout files.

ListView :

List of scrollable items can be displayed in
Android using ListView. It helps you to
displaying the data in the form of a scrollable list.
Users can then select any list item by clicking on
it. ListView is default scrollable so you do not
need to use scroll View or anything else
with ListView. A very common example of

ListView is phone contact book

GridView :

In android GridView is a view group that display items in two
or more dimensional scrolling grid (rows and columns), the
grid items are not necessarily predetermined but they are
automatically inserted to the layout using a ListAdapter. Users
can then select any grid item by clicking on it. GridView is
default scrollable so you don’t need to use ScrollView or
anything else with GridView. An example of GridView is your

default Gallery

ScrollView :

In Android, a ScrollView is a view group that is
used to make vertically scrollable views. A scroll

view contains a single direct child only. In order
to place multiple views in the scroll view, one
needs to make a view group(like LinearLayout)
as a direct child and then you can define many
views inside it. A ScrollView supports Vertical
scrolling only, so in order to create a horizontally
scrollable view, HorizontalScrollView is used.

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">
 <ScrollView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:layout_editor_absoluteX="0dp"
 tools:layout_editor_absoluteY="-127dp">

 <TextView android:id="@+id/scrolltext"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/scrolltext"
 android:textColor="@color/green"/>
 </ScrollView>
</androidx.constraintlayout.widget.ConstraintLayout>

2) Activity, Activity Lifecycle

Activity : An activity represents a single screen with a user interface just like window or frame of Java.

Almost all activities interact with the user, so the Activity class takes care of creating a window for you

in which you can place your UI with setContentView(View).

https://www.geeksforgeeks.org/introduction-to-android-development/
https://www.geeksforgeeks.org/android-linearlayout-in-kotlin/
https://www.geeksforgeeks.org/horizontalscrollview-in-kotlin/

9

Activity Lifecycle : Activities in the system are managed as an activity stack. When a new activity is

started, it is placed on the top of the stack and becomes the running activity - the previous activity always

remains below it in the stack, and will not come to the foreground again until the new activity exits.

Activity Lifecycle Public Methods , Description & Structure

1) onCreate () : called when activity is first created.
This is where you should do all of your normal static
set up: create views, bind data to lists, ect.

2) onStart () : called when activity is becoming visible

to the user.

3) onResume (): called when activity will start
interacting with the user.

4) onPause () : called when activity is not visible to the

user.

5) onStop () : called when activity is no longer visible
to the user.

6) onRestart() : called after your activity is stopped,
prior to start.

7) onDestroy () : called before the activity is destroyed

3) Linking Activities using Intent.

Intent is the objects, which is used in android for passing the information among Activities in an

Application and from one app to another also.

For example: Intent facilitates you to redirect your activity to another activity on occurrence of any

event. By calling, startActivity() you can perform this task.

Intent intent = new Intent (getApplicationContext (), SecondActivity.class);

startActivity (intent);

In the above example, foreground activity is getting redirected to another activity i.e.

SecondActivity.java.

 getApplicationContext() returns the context for your foreground activity.

Intent are of two types: Explicit Intent and Implicit Intent

Explicit Intent: Explicit Intents are used to connect the application internally.In Explicit we use the name of

component which will be affected by Intent. For Example: If we know class name then we can navigate the

app from One Activity to another activity using Intent. Explicit Intent work internally within an application

to perform navigation and data transfer.

 Intent intent = new Intent(getApplicationContext(), SecondActivity.class);

 startActivity(intent);

Here SecondActivity is the JAVA class name where the activity will now be navigated.

Implicit Intent: In Implicit Intents we do need to specify the name of the component. We just specify the

Action which has to be performed and further this action is handled by the component of another application.

The basic example of implicit Intent is to open any web page

Intent intentObj = new Intent(Intent.ACTION_VIEW);

intentObj.setData(Uri.parse("https://www.google.com"));

startActivity(intentObj);

https://abhiandroid.com/java/
https://abhiandroid.com/java/

10

Unlike Explicit Intent you do not use any class name to pass through Intent(). In this example you have just

specified an action. Now when we will run this code then Android will automatically start your web browser

and it will open google home page.

Example :

Activity_main.xml MainActivity.java
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <TextView

 android:id="@+id/textView"

 android:layout_width="404dp"

android:layout_height="36dp"

 android:layout_marginLeft="16dp"

 android:layout_marginTop="52dp"

 android:fontFamily="sans-serif-light"

android:gravity="center"

 android:text="The Facorial Demo" android:textSize="24sp"

 app:layout_constraintBottom_toTopOf="@+id/edNum"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="1.0"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <EditText

 android:id="@+id/edNum"

 android:layout_width="318dp" android:layout_height="76dp"

 android:layout_marginTop="24dp" android:ems="10"

 android:hint="Enter the Positive Number"

 android:inputType="textPersonName"

 android:textColor="#C50F0F" android:textSize="24sp"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.494"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/textView" />

 <Button

 android:id="@+id/btFind"

 android:layout_width="296dp" android:layout_height="95dp"

 android:layout_marginBottom="348dp" android:text="Find"

 android:textColor="#AD1111" android:textSize="24sp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/edNum" />

 <Button

 android:id="@+id/btReset"

 android:layout_width="287dp"

android:layout_height="104dp"

 android:text="Reset"

 android:textColor="#AD1111" android:textSize="24sp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/btFind"

 app:layout_constraintVertical_bias="0.151" />

 <TextView

 android:id="@+id/txtDisplay"

 android:layout_width="269dp" android:layout_height="78dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/btReset"

 app:layout_constraintVertical_bias="0.245" />

</androidx.constraintlayout.widget.ConstraintLayout>

package com.example.factorial;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

 EditText edNum;

 Button btFind,btReset;

 TextView txtDisplay;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 init();

 btFind.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 int num = Integer.parseInt(edNum.getText().toString());

 int f = 1;

 for(int i = 1;i<=num;i++)

 f = f * i;

 txtDisplay.setText("Facorial : "+f);

 }

 });

 }

 public void init()

 {

 edNum = findViewById(R.id.edNum);

 btFind = findViewById(R.id.btFind);

 btReset = findViewById(R.id.btReset);

 txtDisplay = findViewById(R.id.txtDisplay);

 }

}

11

Lab Assignments:

Set A

1. Create a Simple Application Which Shows Life Cycle of Activity.

2. Create a Simple Application Which Send ―Hello‖ message from one activity to another with help of Button

(Use Intent).

3. Create a Simple Application, which read a positive number from the user and display its factorial value in

another activity.

4. Create a Simple Application, that performs Arithmetic Operations. (Use constraint layout)

Set B

1. Create an Android App, Which reads the Students Details (Name, Surname, Class, Gender, Hobbies, Marks)

and Display the all information in another activity in table format on click of Submit button.

2. Create an Android App with Login Screen. On successful login, gives message go to next Activity (Without

Using Database & use Table Layout).

3. Create following Vertical Scroll View Creation in Android.

12

Set C

1. Create a Simple calculator. (Use Linear Layout)

2) Create an Android Application to convert Indian Rupee(IND) to USD & EUR.

Signature of the instructor: ------------------------- Date:------------------------

Assignment Evaluation

0: Not Done 2: Late Complete 4: Complete

1: Incomplete 3: Needs Improvement 5: Well Done

13

Assignment 3 : Android User Interface and Event Handling

Objectives

• Study how to create user interface in Android.

• Study how to perform event handling

Reading

You should read the following topics before starting this exercise:

• Android - UI Layouts

• Activity, Activity Lifecycle

Control Description Xml code Java Code

Android - TextView

Control:

In Android, TextView displays text

to the user and optionally allows

them to edit it programmatically.

<TextView

android:id="@+id/textView"

android:layout_width="wrap_content"
android:layout_height="wrap_content"

android:text=“Dr. D Y Patil College"

android:textSize="20sp"

android:gravity="center_horizontal"
android:textColor="#f00"

android:textStyle="bold|italic" />

TextView textView = findViewById(R.id.textView);

textView.setText(" Satish Mulgi "); //set text for text view

textView.setTextColor(Color.RED); //set red color for text view
textView.setTextSize(20); //set 20sp size of text

//set background color

textView.setBackgroundColor(Color.BLACK);

Android - EditText

Control :
In Android, EditText is a standard

entry widget in android apps. It is

an overlay over TextView that

configures itself to be editable. We

often use EditText in our

applications in order to provide

an input or text field

<EditText

android:id="@+id/simpleEditText"

android:layout_width="fill_parent"
android:layout_height="wrap_content“

android:layout_centerInParent="true“

android:hint="Enter Your Name Here"

android:textColorHint="#0f0" />

EditText editText = findViewById(R.id.simpleEditText);

editText.setHint("Enter Your Name Here");//display the hint

//set the green hint color
simpleEditText.setHintTextColor(Color.green(0));

String editTextValue = editText.getText().toString();

editText.setText(" Satish Mulgi "); //set text for text view

editText.setTextSize(20); //set 20sp size of text

Android - Button Control

:
In Android, Button represents a

push button. A Push buttons can be

clicked, or pressed by the user to
perform an action.

<Button

android:id="@+id/simpleButton"

android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:gravity="right|center_vertical"

android:textColor="#f00"

android:textSize="25sp"

android:textStyle="bold|italic"
android:background="#147D03"
android:text="ClickMe"/>

simpleButton = findViewById(R.id.simpleButton);

//get id of button

simpleButton.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View view) {

 Toast.makeText(getApplicationContext(),

 "Simple Button ", Toast.LENGTH_LONG).show();

//display the text of button
 }
 });

Android -

ImageView Control

Android

ImageButton Control
In Android, ImageView class is

used to display an image file in

application.

In Android, ImageButton is used to
display a normal button with a

custom image in a button

<ImageView

android:id="@+id/img"

android:layout_width="fill_parent"

android:layout_height="wrap_content"
android:src="@drawable/lion" />

<ImageButton

android:id="@+id/img1"

android:layout_width="wrap_content"
android:layout_height="wrap_content"

android:src="@drawable/home"
android:background="#000"/>

ImageView img = findViewById(R.id.img);

//get the id of second image view

 img.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View view) {

 Toast.makeText(getApplicationContext(),

 "Lion", Toast.LENGTH_LONG).show();

//display the text on image click event
 }

 });

Android - CheckBox Control :

In Android, CheckBox is a type of

two state button either unchecked

or checked in Android. Or you

can say it is a type
of on/off switch that can be toggled

by the users.

<CheckBox android:id="@+id/cb"

 android:layout_width="wrap_content"

android:layout_height="wrap_content"
 android:text="Cricket"

 android:textColor="#44f"
 android:textSize="20sp"/>

CheckBox cb = findViewById(R.id.cb);

// set the current state of a check box

cb.setChecked(true);
//check current state of a check box (true or false)

Boolean checkBoxState = cb.isChecked();

https://abhiandroid.com/ui/button/
https://abhiandroid.com/ui/imagebutton/
https://abhiandroid.com/ui/imageview/
https://abhiandroid.com/ui/imagebutton/
https://abhiandroid.com/ui/button/
https://abhiandroid.com/ui/button

14

Android - Switch (On/Off)

:
In Android, Switch is a two-state

toggle, switch widget that can
select between two options. It is

used to display checked and

unchecked state of

a button providing slider control to
user. It is basically an

off/on button which indicate the

current state of Switch. It is

commonly used in selecting on/off
in Sound, Bluetooth, WiFi etc.

<Switch

 android:id="@+id/simpleSwitch"

 android:layout_width="wrap_content
"

 android:layout_height="wrap_content

"

 android:checked="true"
 android:text="switch"

android:layout_centerHorizontal="true

"

 android:textOn="On"
 android:textOff="Off"

 android:textColor="#f00"

 android:padding="20dp"

 android:gravity="center"
 android:textSize="25sp"
 android:background="#000"/>

 simpleSwitch = findViewById(R.id.simpleSwitch);

 submit = (Button) findViewById(R.id.submitButton);

 submit.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {

 String ss;

 if (simpleSwitch.isChecked())
 ss = simpleSwitch.getTextOn().toString();

 else

 ss = simpleSwitch.getTextOff().toString();

Toast.makeText(getApplicationContext(), "Switch :" + ss + "\n",

Toast.LENGTH_LONG).show();

ToggleButton (On/Off) :
In Android, ToggleButton is used

to display checked and unchecked
state of

a button. ToggleButton basically

an off/on button with a light

indicator, which indicate the
current state of toggle button. The

most simple example

of ToggleButton is doing on/off in

sound, Bluetooth, wifi, hotspot etc.

<ToggleButton

 android:id="@+id/tb"

 android:layout_width="wrap_conten

t"
 android:layout_height="wrap_conten

t"

 android:checked="true"

 android:textOff="Off State"
 android:textOn="On State"

 android:textSize="25sp"

 android:layout_centerHorizontal="tru

e"
 android:textColor="#f00"
 android:padding="40dp"/>

 tb = findViewById(R.id.tb);

 submit = (Button) findViewById(R.id.submitButton);

 submit.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View view) {

 String status = "ToggleButton : " + tb.getText();

 Toast.makeText(getApplicationContext(),

status, Toast.LENGTH_SHORT).show();
// display the current state of toggle button's

 } });

RadioButton &

RadioGroup
In Android, RadioButton are

mainly used together in
a RadioGroup.

In RadioGroup checking the one

radio button out of several

radio button added in it will
automatically unchecked all the

others.

It means at one time we can

checked only one radio button from
a group of radio buttons which

belong to same radio group.

RadioButon is a two state button

that can be checked or unchecked.
If a radio button is unchecked then

a user can check it by simply

clicking on it. Once a RadiaButton

is checked by user it can’t be
unchecked by simply pressing on

the same button.

It will automatically unchecked

when you press any
other RadioButton within

same RadioGroup.

<RadioGroup

 android:layout_width="wrap_conten

t" android:layout_height="wrap_conten
t">

<RadioButton

 android:id="@+id/simpleRadioButton

"
 android:layout_width="wrap_conten

t"

 android:layout_height="wrap_conten

t"
 android:checked="true"

 android:textSize="25sp"

 android:textStyle="bold|italic"

 android:padding="20dp"
 android:layout_centerHorizontal="tru

e"

 android:text="Male"

 android:textColor="#f00"
 android:background="#000"/>

 <RadioButton

 android:id="@+id/female" android:la

yout_width="wrap_content" android:la
yout_height="wrap_content"/>

 </RadioGroup>

public void showMethod(View view){

male = findViewById(R.id.male);

female = findViewById(R.id.female);

 str = "Male : "+male.isChecked()+"\n Female :
"+female.isChecked();

 str = str+"\nYes : "+yes.isChecked()+"\n No : "+no.isChecked();

 textView.setText(str.toString());

 Toast toast =
Toast.makeText(getApplicationContext(),str,Toast.LENGTH_LONG);

 toast.setMargin(200,100);

 toast.show(); }

https://abhiandroid.com/ui/switch/
https://abhiandroid.com/ui/switch/
https://abhiandroid.com/ui/button/
https://abhiandroid.com/ui/button/
https://abhiandroid.com/ui/togglebutton/
https://abhiandroid.com/ui/button/
https://abhiandroid.com/ui/togglebutton/
https://abhiandroid.com/ui/button/
https://abhiandroid.com/ui/button/
https://abhiandroid.com/ui/togglebutton/

15

Android Toast : Android Toast can be used to display information for the short period of time. Toast class is

used to show notification for a particular interval of time. After sometime it disappears. It doesn't block the

user interaction. Constants of toast :

public static final int LENGTH_LONG : displays view for the long duration of time.

public static final int LENGTH_SHORT : displays view for the short duration of time.

public static Toast makeText(Context context, CharSequence text, int duration) : makes the toast

containing text and duration.

public void show() : displays toast.

public void setMargin (float horizontalMargin, float verticalMargin): changes the horizontal and

vertical margin difference.

Example :

Toast toast=Toast.makeText(getApplicationContext(),"Hello Friends”, Toast.LENGTH_SHORT);

toast.setMargin(50,50);

toast.show();

RatingBar : RatingBar is used to get the rating from the app user. A user can simply touch, drag or click on

the stars to set the rating value. The value of rating always returns a floating point number which may be 1.0,

2.5, 4.5 etc.

1) The getRating() method of android RatingBar class returns the rating number.

RatingBar simpleRatingBar = (RatingBar) findViewById(R.id.simpleRatingBar); // initiate a rating bar

Float ratingNumber = simpleRatingBar.getRating(); // get rating number from a rating bar

2) numStars: numStars attribute is used to set the number of stars (or rating items) to be displayed in a

rating bar. By default a rating bar shows five stars but we can change it using numStars attribute.

numStars must have a integer number like 1,2 etc.

<RatingBar

android:id="@+id/simpleRatingBar"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:numStars="7" />

Java code : simpleRatingBar.setNumStars(7); // set total number of stars

3) getNumStars(): is used to get the number of stars of a RatingBar.

int numberOfStars = simpleRatingBar.getNumStars(); // get total number of stars of rating bar

4) rating: Rating attribute set the default rating of a rating bar. It must be a floating point number.

<RatingBar

android:id="@+id/simpleRatingBar"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:rating="3.5" />

Java code : simpleRatingBar.setRating((float) 3.5); // set default rating

Lab Assignments:

Set A

1. Create an Android Application that will change color of the College Name(Use TextView) on click

of Push Button and change the font size, font style of text view using xml.

16

2. Create an Android Application to accept two numbers(Use PainText) and create two buttons

(power and Average). Display the result on the next activity on Button click

3. Design Following Screens Using RadioButtons & CheckBoxes.Display the selected text using Toast.

4. Create an Android Application that Demonstrate Switch and Toggle Button.

Set B

1. Create an Android Application that Demonstrate RatingBar and Display the number of stars selected on

Toast and TextView

2. Create an Android Application to perform following string operation according to user selection

of radio button.

17

3. Write an Android Application to Change the Image

Displayed on the Screen

4. Design following-add a border to an Android Layout .

Set C

1. Construct image switcher using setFactory().

2. Create an Android Application to convert Decimal number to Binary equivalent.

https://www.sanfoundry.com/java-android-program-change-image-displayed-screen/
https://www.sanfoundry.com/java-android-program-change-image-displayed-screen/
https://www.sanfoundry.com/java-android-program-change-image-displayed-screen/

18

Signature of the instructor: ------------------------- Date:------------------------

Assignment Evaluation

0: Not Done 2: Late Complete 4: Complete

1: Incomplete 3: Needs Improvement 5: Well Done

Assignment 4 : Android TimePicker, DatePicker, Alert Dailog

Android - Alert Dialog: Alert Dialog in an android UI prompts a small window to make decision on mobile

screen. Sometimes before making a decision, it is required to give an alert to the user without moving to next

activity. For example you have seen this type of alert when you try to exit the App and App ask you to confirm

exiting.

AlertDialog.Builder is used to create an interface for Alert Dialog in Android for setting like alert title,

message, image, button, button onclick functionality etc.

 AlertDialog.Builder alertDialogBuilder = new AlertDialog.Builder(this);

1) setTitle(CharSequence title) – This component is used to set the title of the alert

dialog. It is optional component.

alertDialogBuilder.setTitle("Confirm Exit..!!!"); // Setting Alert Dialog Title

2) setIcon(Drawable icon) – This component add icon before the title. You will need to

save image in drawable icon.

alertDialogBuilder.setIcon(R.drawable.question); // Icon Of Alert Dialog

3) setMessage(CharSequence message) – This component displays the required message

in the alert dialog.

 alertDialogBuilder.setMessage("Are you sure,You want to exit");// Setting Alert Dialog

Message

4) setCancelable(boolean cancelable) – This component has boolean value i.e true/false.

If set to false it allows to cancel the dialog box by clicking on area outside the dialog

else it allows.

alertDialogBuilder.setCancelable(false);

5) setPositiveButton(CharSequence text, DialogInterface.OnClickListener listener) – This

component add positive button and further with this user confirm he wants the alert dialog question to

happen.

 alertDialogBuilder.setPositiveButton("Yes",

 new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface arg0, int arg1) {

 finish ();

} });

19

6) setNegativeButton(CharSequence text, DialogInterface.OnClickListener listener) – This

component add negative button and further with this user confirm he doesn’t want the alert dialog

question to happen.

alertDialogBuilder.setNegativeButton("No",

 new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

Toast.makeText(MainActivity.this,"You clicked over No",Toast.LENGTH_SHORT).show();

} });

7) setNeutralButton(CharSequence text, DialogInterface.OnClickListener listener) – This

component simply add a new button and on this button developer can set any other onclick

functionality like cancel button on alert dialog.

alertDialogBuilder.setNeutralButton("Cancel",

 new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

Toast.makeText(getApplicationContext(),"You clicked on

Cancel",Toast.LENGTH_SHORT).show();

 }

 });

8) alertDialogBuilder.create();

9) alertDialogBuilder.show();

Example :

final AlertDialog.Builder adb = new AlertDialog.Builder(this);
adb.setTitle("Confirm Exit !");

adb.setMessage("are you sure, you want to Exit ?");
adb.setCancelable(true);
adb.setPositiveButton("OK", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 finish();
 }
});

adb.setNegativeButton("Cancel", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 Toast.makeText(getApplicationContext(),"You pressed Cancel ",Toast.LENGTH_LONG).show();
 }
});
adb.setNeutralButton("Retry", new DialogInterface.OnClickListener() {

 @Override
 public void onClick(DialogInterface dialog, int which) {
 Toast.makeText(getApplicationContext(),"You Presses cancel ",Toast.LENGTH_LONG).show();
 }
});
button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 adb.create();

20

 adb.show();

 }
 });

Custom Alert Dialog: The custom dialog uses DIALOG to create custom alert in android studio. Dialog

display a small window that is a popup which draws the user attention over the activity before they continue

moving forward. The following are the steps to create custom alert Dialog.

Step 1: Create a new project and name it CustomAlertDialogDemo.

Step 2: Open res -> layout -> activity_main.xml and create XML for button and textview. On button

click custom alert dialog will appear & textview is for asking user to click on button.

Step 3 : Now create a layout file name as custom.xml . In this file we are going to define the XML

for custom dialog appearance. For example a textbox , imageview and a button.

Step 4 : Now open app -> java -> package -> MainActivity.java and add the below code. In this code

onclick is added over the button click and Dialog is used to create the custom alert dialog.

button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View arg0) {

 final Dialog dialog = new Dialog(context); // custom dialog

 dialog.setContentView(R.layout.custom);

 // if button is clicked, close the custom dialog

 dialog.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 dialog.dismiss();

Toast.makeText(getApplicationContext(),"Dismissed..!!",Toast.LENGTH_SHORT).show();

 }

 });

TimePicker: In Android, TimePicker is a widget used for selecting the time of the day in either

AM/PM mode or 24 hours mode. The displayed time consist of hours, minutes and clock format. If

we need to show this view as a Dialog then we have to use a TimePickerDialog class.

<TimePicker

 android:id="@+id/simpleTimePicker“

 android:layout_width="wrap_content"

 android:layout_height="wrap_content“

 android:timePickerMode="spinner"/> or clock

Some Methods of TimePicker:

1) setCurrentHour(Integer currentHour): This method is used to set the current hours in

a time picker.

https://abhiandroid.com/androidstudio/start-create-project
https://abhiandroid.com/ui/xml/
https://abhiandroid.com/ui/xml/
https://abhiandroid.com/ui/textview/
https://abhiandroid.com/ui/textview/
https://abhiandroid.com/ui/imageview/
https://abhiandroid.com/java/
https://abhiandroid.com/java/
https://abhiandroid.com/ui/timepicker/

21

2) setHour(Integer hour): setCurrentHour() method was deprecated in API level 23. From api

level 23 we have to use setHour(Integer hour). In this method there is only one parameter of

integer type which is used to set the value for hours.

3) setCurrentMinute(Integer currentMinute): This method is used to set the current minutes

in a time picker.

4) getCurrentHour(): getCurrentHour() method was deprecated in API level 23. From api level

23 you have to use getHour(). This method returns an integer value.

5) getCurrentMinute():This method is used to get the current minutes from a time picker.

6) getMinute(): getCurrentMinute() method was deprecated in API level 23. From api level 23

we have to use getMinute(). This method returns an integer value.

7) setIs24HourView(Boolean is24HourView):This method is used to set the mode of the Time

picker either 24 hour mode or AM/PM mode. In this method we set a Boolean value either

true or false. True value indicate 24 hour mode and false value indicate AM/PM mode.

8) is24HourView():This method is used to check the current mode of the time picker. This

method returns true if its 24 hour mode or false if AM/PM mode is set.

TimePicker simpleTimePicker = (TimePicker)findViewById(R.id.simpleTimePicker);

 // initiate a time picker

 simpleTimePicker.setOnTimeChangedListener(new TimePicker.OnTimeChangedListener()

 {

 @Override

public void onTimeChanged(TimePicker view, int hourOfDay, int minute) {

time.setText(hourOfDay + ":" + minute);

 } });

Set A

1. Create an Android application that demonstrate the Alert Dialog.

2. Write an Android code to merge given two Array/List

3. . Create an Android application that demonstrate the Custom Alert Dialog.

4. Create an Android Application to find the factorial of a number and Display the Result on Alert

Box.

22

Set B

1. Develop an Android application that create custom Alert Dialog containing Friends Name and

 onClick of Friend Name Button greet accordingly.

2. Create an Android Application that Demonstrate DatePicker and DatePickerDailog.

3. Create an Android Application that Demonstrate TimePicker and

TimePickerDailog.

Set C

1) Create a Simple Android Application to calculate age of a person. (Use

Table Layout)

Signature of the instructor: ------------------------- Date:------------------------

Assignment Evaluation

0: Not Done 2: Late Complete 4: Complete

1: Incomplete 3: Needs Improvement 5: Well Done

23

Assignment 5 : Android Adapter and Menu

In Android, Adapter is a bridge between UI component and data source that helps us to fill data in

UI component. It holds the data and send the data to an Adapter view then view can takes the data

from the adapter view and shows the data on different views like

as ListView, GridView, Spinner etc. For more customization in Views we uses the base adapter or

custom adapters. To fill data in a list or a grid we need to implement Adapter.

There are the some commonly used Adapter in Android used to fill the data in the UI components.

1) BaseAdapter – It is parent adapter for all other adapters

2) ArrayAdapter – It is used whenever we have a list of single items which is backed by an

array.

3) Custom ArrayAdapter – It is used whenever we need to display a custom list.

4) SimpleAdapter – It is an easy adapter to map static data to views defined in your XML file

5) Custom SimpleAdapter – It is used whenever we need to display a customized list and

needed to access the child items of the list or grid

List View: It is widely used in android applications. A very common example of ListView is your

phone contact book, where you have a list of your contacts displayed in a ListView and if you click

on it then user information is displayed.

Adapter: To fill the data in a ListView we simply use adapters. List items are automatically inserted

to a list using an Adapter that pulls the content from a source such as an arraylist, array or database.

Listview is present inside Containers. From there you can drag and drop on virtual mobile screen to

create it. Alternatively you can also XML code to create it.

divider: This is a drawable or color to draw between different list items.

dividerHeight: This specify the height of the divider between list items. This could be in dp(density

pixel), sp(scale independent pixel) or px(pixel).

XML Code :

 <ListView

 android:id="@+id/simpleListView“

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:divider="#f00"

 android:dividerHeight="1dp"

 android:listSelector="#0f0"/>

Java code :

 ListView simpleList;

 String countryList[] = {"Rajesh", "Ramesh", "Suresh", "Satish", "Rakesh", "Dinesh"};

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

 simpleList = (ListView)findViewById(R.id.simpleListView);

ArrayAdapter<String> arrayAdapter = new ArrayAdapter<String>(this,

R.layout.activity_listview, R.id.textView, countryList);

simpleList.setAdapter(arrayAdapter);

}

https://abhiandroid.com/ui/xml/

24

GridView : In android GridView is a view group that display items in two dimensional scrolling grid

(rows and columns), the grid items are not necessarily predetermined but they are automatically

inserted to the layout using a Adapter. Users can then select any grid item by clicking on it.

GridView is default scrollable. An example of GridView is your default Gallery, where you have

number of images displayed using grid. To fill the data in a GridView we simply use adapter and grid

items are automatically inserted to a GridView using an Adapter which pulls the content from a

source such as an arraylist, array or database

XML Code :

<GridView

 android:id="@+id/simpleGridView" android:layout_width="fill_parent"

 android:layout_height="wrap_content" android:numColumns="3“

 android:verticalSpacing="50dp“

 android:horizontalSpacing="50dp“

 android:columnWidth="80dp"

 android:listSelector="#0f0"

/>

Spinner :

In Android, Spinner provides a quick way to select one value from a set of values. Android spinners

are nothing but the drop down-list seen in other programming languages. In a default state,

a spinner shows its currently selected value. It provides a easy way to select a value from a list of

values.

XML Code :

<Spinner

 android:id="@+id/simpleSpinner"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content”

 android:layout_centerHorizontal="true"

 android:layout_marginTop="100dp" />

Java code :

String[] bankNames={"BOI","SBI","HDFC","PNB","OBC"};

Spinner spin = (Spinner) findViewById(R.id.simpleSpinner);

ArrayAdapter aa = new

ArrayAdapter(this,android.R.layout.simple_spinner_item,bankNames);

 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

 spin.setAdapter(aa);

 spin.setOnItemSelectedListener(this);

public void onItemSelected(AdapterView<?> arg0, View arg1, int position,long id) {

Toast.makeText(getApplicationContext(), bankNames[position],

Toast.LENGTH_LONG).show(); }

Menu in Android : In android, there are three types of Menus available to define a set of options

and actions in our android applications.

1) Android Options Menu : The options menu is the primary collection of menu items for an

activity. It's where you should place actions that have a overall impact on the app, such as

Search, Compose Email and Settings.

2) Android Context Menu : A context menu is a floating menu that appears when the user

performs a long-click on an element. It provides actions that affect the selected content or

context frame.

https://abhiandroid.com/ui/adapter/
https://abhiandroid.com/ui/adapter/
https://www.geeksforgeeks.org/android-app-development-fundamentals-for-beginners/
https://www.geeksforgeeks.org/android-menus/

25

3) Android Popup Menu : A popup menu displays a list of items in a vertical list that is

anchored(sticked) to the view that invoked the menu. It's good for providing an overflow of

actions that relate to specific content or to provide options for a second part of a command.

How to create a Menu?

For all menu types, Android provides a standard XML format to define menu items. you should

define a menu and all its items in an XML menu resource. You can then inflate the menu resource i.e

load the XML files as a Menu object in your activity.

1) A new menu directory would be made under res directory.

2) Add menu_file.xml file in menu directory by right clicking on menu --> New --> Menu

resource file.

3) Give the name as menu_file.xml and click on Ok.

4) The menu_file.xml file contains the following tags:

a) <menu> : It defines a Menu, which is a container for menu items. A <menu> element

must be the root node for the file and can hold one or more <item> and <group>

elements.

b) <item>: It creates a MenuItem, which represents a single item in a menu. This element

may contain a nested <menu> element in order to create a submenu.

c) <group> :It is an optional, invisible container for <item> elements. It allows you to

categorize menu items so they share properties such as active state and visibility.

menu_file.xml

<?xml version="1.0" encoding="utf-8"?>

 <menu

 xmlns:android="http://schemas.android.com/apk/res/android">

 <item

 android:id="@+id/item1"

 android:title="item1“

 android:icon="@drawable/item" >

<!-- "item" submenu -->

 <menu>

 <item

 android:id="@+id/a"

 android:title="subitem a"

 android:icon="@drawable/subitem_a"/>

 <item

 android:id="@+id/b“

 android:title="subitem b“

 android:icon="@drawable/subitem_b" />

 </menu>

</item>

 </menu>

Making an Option Menu

◼ To make an option menu, we need to Override onCreateOptionsMenu() method as

follows:

@Override

public boolean onCreateOptionsMenu(Menu menu)

{

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.menu_file, menu);

 return true;

26

}

MenuInflater inflater = getMenuInflater();

 This gives a MenuInflater object that will be used to inflate(convert our XML file into Java

Object) the menu_file.xml file.

inflater.inflate(R.menu.menu_file, menu);

 inflate() method is used to inflate the menu_file.xml file.

Handling Click Events

◼ When the user selects an item from the options menu, the system calls your

activity's onOptionsItemSelected() method.

◼ This method passes the MenuItem selected.

◼ You can identify the item by calling getItemId() method, which returns the unique ID for

the menu item (defined by the android:id attribute in the menu resource).

◼ You can match this ID against known menu items to perform the appropriate action.

@Override

public boolean onOptionsItemSelected(MenuItem item) {

 //Handle item selection

 switch (item.getItemId()) {

 case R.id.i1:

 //perform any action; return true;

 case R.id.a:

 //perform any action; return true;

 case R.id.b:

 //perform any action; return true;

 default: return super.onOptionsItemSelected(item);

}

 }

Making Contextual Menu

◼ To make a floating context menu, you need to follow the following steps:

◼ Register the View to which the context menu should be associated by

calling registerForContextMenu() and pass it the View.

◼ If your activity uses a ListView or GridView and you want each item to provide the same

context menu, you can register yout all items for a context menu by passing the ListView or

GridView object to registerForContextMenu() method.

◼ Implement the onCreateContextMenu() method in your Activity.

27

◼ When the registered view receives a long-click event, the system calls

your onCreateContextMenu() method.

◼ This is where you define the menu items, usually by inflating a menu resource.

For example:

@Override

public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo menuInfo) {

 super.onCreateContextMenu(menu, v, menuInfo);

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.menu_file, menu);

}

MenuInflater allows you to inflate the menu_file.xml file from a menu resource. The method

parameters include the View that the user selected and aContextMenu. ContextMenuInfo object

provides additional information about the item selected. If your activity has several views such that

each provide a different context menu, you might use these parameters to determine which context

menu to inflate.

Handling Click Events

@Override

public boolean onContextItemSelected(MenuItem item)

{

 switch (item.getItemId())

 {

 case R.id.i1:

 //Perform any action; return true;

 case R.id.a:

 //Perform any action; return true;

 case R.id.b:

 //Perform any action; return true;

 default: return super.onContextItemSelected(item);

 }

 }

Making Popup Menu

◼ If you have define your menu_file.xml file in XML, here's how you can show the popup

menu:

◼ Make an object of PopupMenu, whose constuctor takes the current application Context and

the View to which the menu should be anchored.

◼ Use MenuInflater to inflate your menu resource into the Menu object returned

by PopupMenu.getMenu()

28

◼ Call PopupMenu.show()

For example,

<Button android:id="@+id/button" android:layout_width="wrap_content"

android:layout_height="wrap_content" android:text="Button"

 android:onClick="pop" />

The activity can then show the popup menu like this:

public void pop(View v)

{ PopupMenu popup = new PopupMenu(this,v);

 MenuInflater inflater = getMenuInflater(); inflater.inflate(R.menu.menu_file,popup.getMenu());

 popup.show();

 }

Listener

b1.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 final PopupMenu popup = new PopupMenu(getApplicationContext(),v);

 MenuInflater inflater = getMenuInflater();

inflater.inflate(R.menu.menu_file,popup.getMenu());

 popup.show();

 popup.setOnMenuItemClickListener(new PopupMenu.OnMenuItemClickListener() {

 @Override

 public boolean onMenuItemClick(MenuItem item) {

 Toast.makeText(getApplicationContext(),"selected

"+item.getTitle(),Toast.LENGTH_LONG).show();

 return true;

 }

 });

Set A
1. Create an Android Application that Demonstrate ListView and Onclick of List Display the
Toast.

29

2. Create an Android Application that Demonstrate GridView and Onclick of Item Display the Toast.

3. Create an Android Application that Demonstrate GridView with Images

Set B
1. Create an Android Application that Demonstrate Custom ListView which shows the BookName and
Author Name

2. Create a Custom ListView in Android Application

30

3. Create an Android Application that Demonstrate ContextMenu.

Set C

1. Create the following layout using spinner

2. Create an Android Application to demonstrate Length converter.

Signature of the instructor: ------------------------- Date:------------------------

Assignment Evaluation

0: Not Done 2: Late Complete 4: Complete

1: Incomplete 3: Needs Improvement 5: Well Done

31

Assignment 6: Thread and Services

Objective:

• To provide a way to improve application performance through parallelism.

• To ensure that the application remains active in the background so that the user can operate

multiple applications at the same time.

Thread and Notification:

A thread is a thread of execution in a program. The Java Virtual Machine allows an application to

have multiple threads of execution running concurrently. When an application is launched, the system

creates a thread of execution for the application, called "main." This thread is very important because

it is in charge of dispatching events to the appropriate user interface widgets, including drawing

events.

Worker threads

Worker threads are background threads. They are the threads that are created separately, other than

the UI thread. Since blocking the UI thread is restricted according to the rule, user should run the

child processes and tasks in worker threads.

Example
public void onClick(View v) {
 new Thread(new Runnable() {
 public void run() {
 Bitmap b = loadImageFromNetwork("http://example.com/image.png");
 mImageView.setImageBitmap(b);
 }
 }).start();
}

In the above example code, the download operation is handled by a second thread other than

the UI thread. But the program violates the second rule. The imageView from UI thread is

manipulating from this worker thread. In the above example code, the download operation is handled

by a second thread other than the UI thread. But the program violates the second rule. The imageView

from UI thread is manipulating from this worker thread.

According to the second rule, UI could not be accessed from outside the UI thread. Solution

for such a restriction is runOnUiThread(Runnable) method. The main or UI thread can be accessed

from other threads using runOnUiThread(Runnable) method. As a result, the specified runnable

action passed through this method will run on the UI thread. The action will execute immediately, if

the current thread is in the UI itself. Else the action will be posted to the event queue.

Example:
MainClassName.this.runOnUiThread(new Runnable() {
 public void run() {
 textViewObject.setText("Set this " + value from worker thread + "!");
 }
 });

32

Handlers & Runnable:
A handler is basically a message queue. You post a message to it, and it will eventually

process it by calling its run method and passing the message to it. Since these run calls will always

occur in the order of messages received on the same thread, it allows you to serialize events.

Uses of Handler:

Handler has two main uses

1. Scehduling of messages and runnables that need to be executed in the future.

2. Enqueueing actions that need to be performed in the background thread.

Handler is a class fundamental to how we do threading in android, at the infrastructure level.

It works hand in hand with the Looper. Together they underpin everything that the main thread does

and including the invocation of the Activity lifecycle methods.

Looper will take care of dispatching work on its message-loop thread. On the other hand

Handler will serve two roles:

1. First it will provide an interface to submit messages to its Looper queue.

2. Secondly it will implement the callback for processing those messages when they are

dispatched by the Looper.

Example:
public void onClick(View v) {

 nstoploop = true;

 new Thread(new Runnable() {

 @Override

 public void run() {

 while (nstoploop){

 try

 {

 Thread.sleep(500);

 count++;

 }catch (InterruptedException e){

 Log.i(TAG,e.getMessage());

 }

 handler.post(new Runnable() {

 @Override

 public void run() {

 tv.setText(" "+count);

 }

 });

 }

 }

 }).start();

 }

 });

33

We can’t touch background thread to main thread directly so handler is going to collect all events

which are available in main thread in a queue and posses this queue to looper class.

In android Handler is mainly used to update the main thread from background thread or other than

main thread. There are two methods are in handler.

• Post() − it going to post message from background thread to main thread using looper.

• sendmessage() − if you want to organize what you have sent to ui (message from background

thread) or ui functions. you should use sendMessage().

AsynTask:

Android AsyncTask going to do background operation on background thread and update on

main thread. In android we can’t directly touch background thread to main thread in android

development. asynctask help us to make communication between background thread to main thread.

Android AsyncTask is an abstract class provided by Android which gives us the liberty to

perform heavy tasks in the background and keep the UI thread light thus making the application more

responsive.

Android application runs on a single thread when launched. Due to this single thread model

tasks that take longer time to fetch the response can make the application non-responsive. To avoid

this we use android AsyncTask to perform the heavy tasks in background on a dedicated thread and

passing the results back to the UI thread. Hence use of AsyncTask in android application keeps the

UI thread responsive at all times.

Methods of AsyncTask

• onPreExecute() –

 Before doing background operation we should show something on screen like

progressbar or any animation to user. we can directly comminicate background operation

using on doInBackground().

• doInBackground(Params) –

In this method we have to do background operation on background thread. Operations

in this method should not touch on any mainthread activities or fragments.

• onProgressUpdate(Progress…) –

While doing background operation, if you want to update some information on UI, we

can use this method.

• onPostExecute(Result) –

 In this method we can update ui of background operation result.

Generic Types in Async Task

• TypeOfVarArgParams –

It contains information about what type of params used for execution.

• ProgressValue –

34

It contains information about progress units. While doing background operation we

can update information on ui using onProgressUpdate().

• ResultValue –

It contains information about result type.

Example:

MainActivity.java

public class MainActivity extends AppCompatActivity {

Button b1,b2;

TextView tv;

Boolean stoploop;

int count = 0;

String TAG = "Thread";

private MyAsynctask async;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 b1 = (Button)findViewById(R.id.btn1);

 b2 = (Button)findViewById(R.id.btn2);

 tv = (TextView)findViewById(R.id.textView);

 b1.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 stoploop = true;

 async = new MyAsynctask();

 async.execute(count);

 }

 });

 b2.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 stoploop = false;

 }

 });

 }

 private class MyAsynctask extends AsyncTask<Integer,Integer ,Integer>

 {

 private int ccount;

 @Override

 protected void onPreExecute() {

 super.onPreExecute();

 ccount=0;

35

 }

 @Override

 protected Integer doInBackground(Integer... integers) {

 ccount = integers[0];

 while(stoploop){

 try

 {

 Thread.sleep(1000);

 ccount++;

 publishProgress(ccount);

 }

 catch (InterruptedException e){

 Log.i(TAG," "+e.getMessage());

 }

 }

 return ccount;

 }

 @Override

 protected void onProgressUpdate(Integer... values) {

 super.onProgressUpdate(values);

 tv.setText(""+values[0]);

 }

 @Override

 protected void onPostExecute(Integer integer) {

 super.onPostExecute(integer);

 tv.setText(""+integer);

 count = integer;

 }

 }

}

Activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

36

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintHorizontal_bias="0.58"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintVertical_bias="0.102" />

 <Button

 android:id="@+id/btn1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Start Thread"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.6"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/textView"

 app:layout_constraintVertical_bias="0.116" />

 <Button

 android:id="@+id/btn2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Stop Thread"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.6"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/btn1"

37

 app:layout_constraintVertical_bias="0.145" />

</androidx.constraintlayout.widget.ConstraintLayout>

Broadcast Receiver :

Broadcast in android is the system-wide events that can occur when the device starts, when a

message is received on the device or when incoming calls are received, or when a device goes to

airplane mode, etc. Broadcast Receivers are used to respond to these system-wide events. Broadcast

Receivers allow us to register for the system and application events, and when that event happens,

then the register receivers get notified. There are mainly two types of Broadcast Receivers:

• Static Broadcast Receivers:

These types of Receivers are declared in the manifest file and works even if the app is

closed.

• Dynamic Broadcast Receivers:

These types of receivers work only if the app is active or minimized.

Creating the Broadcast Receiver:

class AirplaneModeChangeReceiver:BroadcastReceiver() {

 override fun onReceive(context: Context?, intent: Intent?) {

 // logic of the code needs to be written here

 }

}

Registering a BroadcastReceiver:

IntentFilter(Intent.ACTION_AIRPLANE_MODE_CHANGED).also {

 // receiver is the broadcast receiver that we have registered

 // and it is the intent filter that we have created

 registerReceiver(receiver,it)

 }

 Intent Description Of Event

android.intent.action.BATTERY_LOW :
Indicates low battery condition on

the device.

android.intent.action.BOOT_COMPLETED
This is broadcast once after the

system has finished booting

android.intent.action.CALL
 To perform a call to someone

specified by the data

38

 Intent Description Of Event

android.intent.action.DATE_CHANGED Indicates that the date has changed

android.intent.action.REBOOT
Indicates that the device has been a

reboot

android.net.conn.CONNECTIVITY_CHANGE
The mobile network or wifi

connection is changed(or reset)

android.intent.

ACTION_AIRPLANE_MODE_CHANGED

This indicates that airplane mode

has been switched on or off.

Example:

MainActivity.Java

public class MainActivity extends AppCompatActivity {

 private EditText txtPhone;

 private Button btn;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 txtPhone = (EditText)findViewById(R.id.mblTxt);

 btn = (Button)findViewById(R.id.btnCall);

 btn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 callPhoneNumber();

 }

 });

 }

 @Override

 public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions,

@NonNull int[] grantResults) {

 if(requestCode == 101)

 {

 if(grantResults[0] == PackageManager.PERMISSION_GRANTED)

 {

 callPhoneNumber();

 }

39

 }

 }

 public void callPhoneNumber()

 {

 try

 {

 if(Build.VERSION.SDK_INT > 22)

 {

 if (ActivityCompat.checkSelfPermission

 (this, Manifest.permission.CALL_PHONE) !=

PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(MainActivity.this, new

String[]{Manifest.permission.CALL_PHONE}, 101);

 return;

 }

 Intent callIntent = new Intent(Intent.ACTION_CALL);

 callIntent.setData(Uri.parse("tel:" + txtPhone.getText().toString()));

 startActivity(callIntent);

 }

 else {

 Intent callIntent = new Intent(Intent.ACTION_CALL);

 callIntent.setData(Uri.parse("tel:" + txtPhone.getText().toString()));

 startActivity(callIntent);

 }

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 }

 }

}

Activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context=".MainActivity">

 <TextView

 android:id="@+id/fstTxt"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="100dp"

40

 android:layout_marginTop="150dp"

 android:text="Mobile No"

 />

 <EditText

 android:id="@+id/mblTxt"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="100dp"

 android:ems="10">

 </EditText>

 <Button

 android:id="@+id/btnCall"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="100dp"

 android:text="Call" />

</LinearLayout>

Services:

A service is a component that runs in the background to perform long-running operations

without needing to interact with the user and it works even if application is destroyed.

Life Cycle of Android Service

There can be two forms of a service.The lifecycle of service can follow two different paths: started

or bound.

1. Started

2. Bound

1) Started Service

A service is started when component (like activity) calls startService() method, now it runs

in the background indefinitely. It is stopped by stopService() method. The service can stop itself by

calling the stopSelf() method.

2) Bound Service

A service is bound when another component (e.g. client) calls bindService() method. The

client can unbind the service by calling the unbindService() method.

41

Fundamentals of Android Services:

Methods Description

onStartCommand()

The Android service calls this method when a component(eg:

activity) requests to start a service using startService(). Once the

service is started, it can be stopped explicitly using stopService()

or stopSelf() methods.

onBind()

This method is mandatory to implement in android service and

is invoked whenever an application component calls the

bindService() method in order to bind itself with a service. User-

interface is also provided to communicate with the service

effectively by returning an IBinder object. If the binding of

service is not required then the method must return null.

onUnbind() The Android system invokes this method when all the clients get

disconnected from a particular service interface.

onRebind()
Once all clients are disconnected from the particular interface

of service and there is a need to connect the service with new

clients, the system calls this method.

onCreate()
Whenever a service is created either using onStartCommand()

or onBind(), the android system calls this method. This method

is necessary to perform a one-time-set-up.

onDestroy() When a service is no longer in use, the system invokes this

method just before the service destroys as a final clean up call.

42

Methods Description

Services must implement this method in order to clean up

resources like registered listeners, threads, receivers, etc.

Example of Android Services:

Step 1: Working with the activity_main.xml file
 Open the activity_main.xml file and add 2 Buttons in it which will start and stop the

service. Below is the code for designing a proper activity layout.

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <LinearLayout

 android:id="@+id/linearLayout"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_centerVertical="true"

 android:orientation="vertical"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintVertical_bias="1.0"

 tools:ignore="MissingConstraints">

 <TextView

 android:id="@+id/textView1"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_marginBottom="170dp"

 android:text="@string/heading"

 android:textAlignment="center"

 android:textAppearance="@style/TextAppearance.AppCompat.Large"

 android:textColor="@android:color/holo_green_dark"

 android:textSize="36sp"

 android:textStyle="bold" />

 <Button

https://www.geeksforgeeks.org/button-in-kotlin/

43

 android:id="@+id/startButton"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_marginStart="20dp"

 android:layout_marginTop="10dp"

 android:layout_marginEnd="20dp"

 android:layout_marginBottom="20dp"

 android:background="#4CAF50"

 android:text="@string/startButtonText"

 android:textAlignment="center"

 android:textAppearance="@style/TextAppearance.AppCompat.Display1"

 android:textColor="#FFFFFF"

 android:textStyle="bold" />

 <Button

 android:id="@+id/stopButton"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_marginStart="20dp"

 android:layout_marginTop="10dp"

 android:layout_marginEnd="20dp"

 android:layout_marginBottom="20dp"

 android:background="#4CAF50"

 android:text="@string/stopButtonText"

 android:textAlignment="center"

 android:textAppearance="@style/TextAppearance.AppCompat.Display1"

 android:textColor="#FFFFFF"

 android:textStyle="bold" />

 </LinearLayout>

</androidx.constraintlayout.widget.ConstraintLayout>

Step 2: Creating the custom service class
A custom service class will be created in the same directory where the MainActivity class

resides and this class will extend the Service class.

public class NewService extends Service {

 private MediaPlayer player;

 @Override

 public int onStartCommand(Intent intent, int flags, int startId) {

 player = MediaPlayer.create(this, R.raw.ss);

 // providing the boolean

 // value as true to play

 // the audio on loop

44

 player.setLooping(true);

 // starting the process

 player.start();

 // returns the status

 // of the program

 return START_STICKY;

 }

 @Override

 public void onDestroy() {

 super.onDestroy();

 player.stop();

 }

 @Nullable

 @Override

 public IBinder onBind(Intent intent) {

 return null;

 }

}

Step 5: Working with the MainActivity file
Now, the button objects will be declared and the process to be performed on clicking these

buttons will be defined in the MainActivity class.

public class MainActivity extends AppCompatActivity implements View.OnClickListener {

 private Button start, stop;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 start = (Button) findViewById(R.id.startButton);

 // assigning ID of stopButton

 // to the object stop

 stop = (Button) findViewById(R.id.stopButton);

 // declaring listeners for the

 // buttons to make them respond

 // correctly according to the process

 start.setOnClickListener(this);

 stop.setOnClickListener(this);

 }

 public void onClick(View view) {

 // process to be performed

45

 // if start button is clicked

 if(view == start){

 // starting the service

 startService(new Intent(this, NewService.class));

 }

 // process to be performed

 // if stop button is clicked

 else if (view == stop){

 // stopping the service

 stopService(new Intent(this, NewService.class));

 }

 }

}

Step 6: Modify the AndroidManifest.xml file
To implement the services successfully on any android device, it is necessary to mention the

created service in the AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.servicedemo">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <service android:name=".NewService"/>

 </application>

</manifest>

Notification:

A notification is a message you can display to the user outside of your application's normal

UI. When you tell the system to issue a notification, it first appears as an icon in the notification area.

To see the details of the notification, the user opens the notification drawer. Both the notification area

and the notification drawer are system-controlled areas that the user can view at any time.

46

The NotificationCompat.Builder Class

Method Description

Notification build() Combine all of the options that have been

set and return a new Notification object.

NotificationCompat.Builder

setAutoCancel (boolean autoCancel)

Setting this flag will make it so the

notification is automatically canceled

when the user clicks it in the panel.

NotificationCompat.Builder setContent

(RemoteViews views)

Supply a custom RemoteViews to use

instead of the standard one.

NotificationCompat.Builder

setContentTitle (CharSequence title)

Set the text (first row) of the notification,

in a standard notification.

Create and Send Notifications

Step 1 - Create Notification Builder

As a first step is to create a notification builder using NotificationCompat.Builder.build().

You will use Notification Builder to set various Notification properties like its small and large icons,

title, priority etc.

NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(this)

Step 2 - Setting Notification Properties

Once you have Builder object, you can set its Notification properties using Builder object as

per your requirement. But this is mandatory to set at least following –

• A small icon, set by setSmallIcon()

• A title, set by setContentTitle()

• Detail text, set by setContentText()

Example:

mBuilder.setSmallIcon(R.drawable.notification_icon);

mBuilder.setContentTitle("Notification Alert, Click Me!");

mBuilder.setContentText("Hi, This is Android Notification Detail!");

Step 3 - Attach Actions

This is an optional part and required if you want to attach an action with the notification. An

action allows users to go directly from the notification to an Activity in your application, where they

can look at one or more events or do further work.

The action is defined by a PendingIntent containing an Intent that starts an Activity in your

application. To associate the PendingIntent with a gesture, call the appropriate method of

NotificationCompat.Builder. For example, if you want to start Activity when the user clicks the

notification text in the notification drawer, you add the PendingIntent by calling setContentIntent().

47

A PendingIntent object helps you to perform an action on your applications behalf, often at a

later time, without caring of whether or not your application is running.

Example:

Intent resultIntent = new Intent(this, ResultActivity.class);

TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);

stackBuilder.addParentStack(ResultActivity.class);

// Adds the Intent that starts the Activity to the top of the stack

stackBuilder.addNextIntent(resultIntent);

PendingIntent resultPendingIntent =

stackBuilder.getPendingIntent(0,PendingIntent.FLAG_UPDATE_CURRENT);

mBuilder.setContentIntent(resultPendingIntent);

Step 4 - Issue the notification

Finally, you pass the Notification object to the system by calling NotificationManager.notify()

to send your notification. Make sure you call NotificationCompat.Builder.build() method on

builder object before notifying it. This method combines all of the options that have been set and

return a new Notification object.

Example:

NotificationManager mNotificationManager = (NotificationManager)

getSystemService(Context.NOTIFICATION_SERVICE);

// notificationID allows you to update the notification later on.

mNotificationManager.notify(notificationID, mBuilder.build());

Accessing Phone services(Call,SMS) :

Messaging and E-mail

Sending SMS messages

SMS messages can be send using SmsManager Class or Built-in SMS application.

Using SmsManager class: Using the SmsManager class, you can send SMS messages from within

your application without the need to involve the built-in Messaging application.

Steps to send SMS

Create a new Android project and name it SMS. Replace the TextView with the following

statements in the main.xml file:

48

Example:

<Button android:id=‖@+id/btnSendSMS‖

android:layout_width=‖fill_parent‖
android:layout_height=‖wrap_content‖

android:text=‖Send SMS‖

android:onClick=‖onClick‖ />

In the AndroidManifest.xml fi le, add the following statements:

<uses-permission android:name=‖android.permission.SEND_SMS/>

Add the following statements to the SMSActivity.java file:

import android.telephony.SmsManager;

import android.view.View;

public void onClick(View v) {

sendSMS(―5556‖, ―Hello my friends!‖);

}

//---sends an SMS message to another device--

private void sendSMS(String phoneNumber, String message)

 {

SmsManager sms = SmsManager.getDefault();

sms.sendTextMessage(phoneNumber, null, message, null, null);

}

Methods of SmsManager Class:

Methods Description

ArrayList<String>

divideMessage(String text)

This method divides a message text
into several fragments, none bigger
than the maximum SMS message
size.

static SmsManager getDefault() This method is used to get the
default instance of the SmsManager

void sendDataMessage (String

destAddress , String scAddress, short

destinationPort, byte[]data,

PendingIntent sentIntent,
PendingIntent deliveryIntent)

This method is used to send a data

based SMS to a specific application
port.

void sendMultipartTextMessage

(String destAddress, String

scAddress, ArrayList<String> parts,

ArrayList<PendingIntent>
sentIntents,

Send a multi-part text based SMS.

49

ArrayList<PendingIntent>
deliveryIntents)

void sendTextMessage(String

destinationAddress, String

scAddress, String text, PendingIntent

sentIntent, PendingIntent
deliveryIntent)

Send a text based SMS.

Sending SMS messages using Intent:

We can also use built-in messaging application to send the message.

Steps to send SMS

Create an Intent Object (Action to send SMS)

ACTION_VIEW action is used to launch an SMS client installed on your Android device.

Intent smsIntent = new Intent(Intent.ACTION_VIEW);

Using Intent Object set Data/Type to send SMS

smsto: is used as a URI to send message using setData() method.

data type is set to vnd.android-dir/mms-sms using setType() method.

Example:

smsIntent.setData(Uri.parse("smsto:"));

smsIntent.setType("vnd.android-dir/mms-sms");

Intent Object used to set a message for one or more phone number with putExtra() method and a

message can be send to multiple receivers separated by ‗:‘.

smsIntent.putExtra(―address‖,new String(―0123456789;3398765587‖));

OR

smsInent.putExtra(―address‖,‖5556 ; 5553 ; 5566‖);

Sending E-mail:

 We can send Email by using Email/Gmail application available on Android. An Email account

is configured by using POP3 or IMAP.

Steps to send Email

Create Android project and name it as Emails

Add the following statements in main.xml file:

50

<Button android:id=”@+id/btnSendEmail”

android:layout_width=”fill_parent” android:layout_height=”wrap_content”

android:text=”Send Email”

android:onClick=”onClick” />

Add the following statements in MainActivity.java file:

public class MainActivity extends Activity {

Button btnSendEmail;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

btnSendEmail = (Button) findViewById(R.id.btnSendEmail);

btnSendEmail.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

String[] to = {―weimenglee@learn2develop.net‖,

―weimenglee@gmail.com‖};

String[] cc = {― ‖};

sendEmail(to, cc, ―Hello‖, ―Hello my friends!‖);

}

});

}

//---sends an SMS message to another device---

private void sendEmail(String[] emailAddresses, String[] carbonCopies, String subject,

String message)

{

Intent emailIntent = new Intent(Intent.ACTION_SEND);

emailIntent.setData(Uri.parse(―mailto:‖));

String[] to = emailAddresses;

String[] cc = carbonCopies;

emailIntent.putExtra(Intent.EXTRA_EMAIL, to);

emailIntent.putExtra(Intent.EXTRA_CC, cc);

emailIntent.putExtra(Intent.EXTRA_SUBJECT, subject);

emailIntent.putExtra(Intent.EXTRA_TEXT, message);

emailIntent.setType(―message/rfc822‖);

startActivity(Intent.createChooser(emailIntent, ―Email‖));

}

}

Lab Assignments:

51

SET A

1. Create an Android application to service in android that plays an audio in the background.

Audio will not be stopped even if you switch to another activity. To stop the audio, you need

to stop the service.

2. Create application to send and receive messages using SMSManager.

3. Create application to send email.

4. Create a Notification in Android and display the notification message on second activity.

SET B

1. Create application to design login form, validate it. Write and send email with appropriate

message.

2. Create an Android application to demonstrate Progress Dialog Box using AsyncTask

3. Create an Android application to demonstrate phone call in android using Implicit Intent.

SET C

1. Create an Android application to demonstrates how to use a service to download a file from the

Internet based on a button click from an activity. Once done, the service notifies the activity via a

broadcast receiver that the download is complete.

2. Create application to send email with attachment.

Signature of the instructor: ------------------------- Date:----------------

Assignment Evaluation

0: Not Done 2: Late Complete 4:

Complete

1: Incomplete 3: Needs Improvement 5: Well Done

https://stackoverflow.com/questions/4538338/progressdialog-in-asynctask

52

Assignment 7: SQLite Database Connection

Objective:

• How to use database in an application.

• How to create and execute database queries

SQLite is an open-source relational database i.e. used to perform database operations on android

devices such as storing, manipulating or retrieving persistent data from the database. It is embedded

in android bydefault. So, there is no need to perform any database setup or administration task.

SQLite is an open source SQL database that stores data to a text file on a device. Android comes in

with built in SQLite database implementation. SQLite supports all the relational database features.

In order to access this database, you don't need to establish any kind of connections for it like ODBC.

SQLiteOpenHelper

Android database sqlite.SQLiteOpenHelper manages database creation, up gradation, down

gradation, version management and opening it. We need to create sub class of SQLiteOpenHelper

and override onCreate and onUpgrade and optionally onOpen. If database is not created, onCreate

is called where we write script for database creation. If already created, then onOpen is called

which opens database.

There are two constructors of SQLiteOpenHelper class.

Constructors Description

SQLiteOpenHelper(Context context, String

name, SQLiteDatabase.CursorFactory

factory, int version)

Create a helper object to create, open,

and/or manage a database

SQLiteOpenHelper(Context context, String

name, SQLiteDatabase.CursorFactory

factory, int version, DatabaseErrorHandler

errorHandler)

Create a helper object to create, open,

and/or manage a database.

https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#SQLiteOpenHelper(android.content.Context, java.lang.String, android.database.sqlite.SQLiteDatabase.CursorFactory, int)
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.CursorFactory.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.CursorFactory.html
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#SQLiteOpenHelper(android.content.Context, java.lang.String, android.database.sqlite.SQLiteDatabase.CursorFactory, int, android.database.DatabaseErrorHandler)

53

Public Methods Description

void close() Close any open database object.

String getDatabaseName()

Return the name of the SQLite database being

opened, as given to the constructor.

SQLiteDatabase getReadableDatabase() Create and/or open a database.

SQLiteDatabase getWritableDatabase()

Create and/or open a database that will be used

for reading and writing.

 Called when the database connection is being

void onConfigure(SQLiteDatabase db) configured, to enable features such as write-

 ahead logging or foreign key support.

abstract void onCreate(SQLiteDatabase db)

Called when the database is created for the first

time.

void onDowngrade(SQLiteDatabase db, int Called when the database needs to be

oldVersion, int newVersion) downgraded.

void onOpen(SQLiteDatabase db) Called when the database has been opened.

https://developer.android.com/reference/java/lang/String.html
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#getDatabaseName()
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#getReadableDatabase()
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

54

void setIdleConnectionTimeout(long

Sets the maximum number of milliseconds that

SQLite connection is allowed to be idle before

idleConnectionTimeoutMs)

it is closed and removed from the pool.

public synchronized void close () Closes the database object.

Example:

public class DBHelper extends SQLiteOpenHelper{

public DBHelper(){

super(context,DATABASE_NAME,null,1);

}

public void onCreate(SQLiteDatabase db){

Creates new database

Create the tables

execute query with the help of execSQL();

Add initial data

}

public void onUpgrade(SQLiteDatabase db,int oldVersion,int newVersion){

}

}

SQLite Database:

 The main package is android.database.sqlite that contains the classes to manage your own

databases:

Database – Creation

In order to create a database you just need to call this method openOrCreateDatabase with

your database name and mode as a parameter. Its syntax is given below:

SQLiteDatabase mydatabase = openOrCreateDatabase("Database name",MODE_PRIVATE,null);

Database – Insertion

We can create table or insert data into table using execSQL method defined in

SQLiteDatabase class. Its syntax is given below

https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html#setIdleConnectionTimeout(long)

55

public void insert(String name, String desc) { ContentValues contentValue = new ContentValues();

contentValue.put(DatabaseHelper.SUBJECT, name); contentValue.put(DatabaseHelper.DESC,

desc); database.insert(DatabaseHelper.TABLE_NAME, null, contentValue); }

Content Values creates an empty set of values using the given initial size.

Database – Fetching

We can retrieve anything from database using an object of the Cursor class. We will call a

method of this class called rawQuery and it will return a resultset with the cursor pointing to the

table. We can move the cursor forward and retrieve the data.

Example:

Cursor resultSet=mydb.rawQuery(―Select * from

Login‖,null); resultSet.moveToFirst();

String username= resultSet.getString(0);

String password= resultSet.getString(1);

Methods Description

int getColumnCount() Returns the total number of

columns of the table.

int getColumnIndex(String

columnName)

Returns the index number of a

column by specifying the name of

the column.

String getColumnName (int
columnIndex)

Returns the name of the column by
specifying the index of the

column.

String[] getColumnNames() Returns the array of all the column

names of the table.

int getCount() Returns the total number of rows

in the cursor.

int getPosition() Returns the current position of the

cursor in the table.

boolean isClosed() Returns true if the cursor is closed.

Lab Assignments

SET A

56

1. Create table Customer (id, name, address, phno). Create Android Application for performing the

following operation on the table. (using sqlite database)

i) Insert New Customer Details.

ii) Show All the Customer Details

2. Create Table Employee(Eno,Ename,Designation,Salary). Create Android Application for

performing the following operation on the table. (Using SQLite Database)

i) Insert New Employee Details.

ii) Display specific employee details.

iii) Display all the Emplyee details.

3. Create simple application shown below. Create table Student(Sid ,Sname ,phno). Use

autoincrement for Sid and Perform following Operation.

a. Add Student and display its information.

b. Delete Student.

4. Create sample application with login module (Check username and password). On successful

login, pass username to next screen And on failing login, alert user using Toast (Hint :Use

Login(username, password) Table.

SET B

1. Create Table project (pno, p_name, ptype, duration) and employee (id, e_name, qulification,

joindate)

Project – employee have many to many relationship.

Using database perform following operation.

1) Add new record into table.

2) Display all the project Details.

2. Create Table Employee(Eno,Ename,Designation,Salary). Create Android Application for

performing the following operation on the table. (Using SQLite Database)

i) Insert New Employee Details.

ii) Display maximum and minimum salary from employees table

iii) Display average salary and number of employees

3. Create Table Student(Studno,Studname,StudTotalmarks,Studno_of_subjects). Create Android

Apllication for performing the following operation on the table. (Using SQLite Database)

i) Insert New student Details.

ii) Display student details.

iii) Display the percent of all students

SET C

57

1. Create table Game(no,name,type, no_of_players). Create Application to perform the following

operations.

i) Insert Game Details.

ii) Update no_of_players to four where game is Badminton.

iii) Display all the records.
2. Create Table Employee(empno,emp_name,dept,salary,branch). Create Android Application to

perform following operations.

 i) Display all Fields of employee table.

 ii) Display the name of employee in descending order.

 iii) Display the total salary of employee which is greater than > 120000

Signature of the instructor: ------------------------- Date:------------------------

Assignment Evaluation

0: Not Done 2: Late Complete 4: Complete

1: Incomplete 3: Needs Improvement 5: Well Done

Assignment 8:

58

Location-Based Services and Google Map

Objectives:

• Study the location based services in android

• Use various operations of Google Map

Location based services: ―Location-based services‖ is used to create an application

which uses current location, location updates, and location information. The two

main LBS elements are:

Location Manager — these services allow applications to obtain periodic

updates of the device's geographical location.

Location Providers — provides periodic reports on the geographical location of

the device.

Google Map: Google Maps is web based service developed by Google. It provides

many facilities such as Satellite view, Street view, real time traffic condition, and

navigations for travelling by foot, car, bicycle and public transportation. To use Google

Maps in your Android applications programmatically.

Google API (Application Programming Interface)

Google APIs is a set of application programming interfaces (APIs) developed by

Google which allow communication with Google Services and their integration to

other services. Your application needs an API key to access the Google Maps servers.

The key is free. You can use it with any of your applications that call the Google Maps

Android API.

Get Google Maps API Key

59

Use the link provided in the google_maps_api.xml file.

Copy the link provided in the google_maps_api.xml file and pastes it into your

browser. The link takes you to the Google API Console and supplies the required

information to the Google API Console via URL parameters.

Follow the instructions to create a new project on the Google API Console or select

an existing project.

Create an Android-restricted API key for your project.

Copy the resulting API key, go back to Android Studio, and paste the API key into

the <string> element in the google_maps_api.xml file.

Displaying the Map

Classes and Interface used for displaying Map are given below:

Interfaces:

Package Name: com.google.android.gms.maps

OnMapReadyCallback – This interface is used to execute method when Map is
ready.

Public Method Description

abstract void onMapReady
(GoogleMap googleMap)

This method execute
automatically when map is ready

 Package Name: android.app

FragmentManager: FragmentManager is a class used to create transactions for

adding, removing or replacing fragments. It used to interact with Fragment inside

the activity.

Public Methods Description

Fragment findFragmentById(int id)
Finds a fragment that was identified by the
given id.

60

Fragment findFragmentByTag(String
tag)

Finds a fragment that was identified by the
given

 tag.

GoogleMap: This is the main class of the Google Maps Android API. You cannot

instantiate a GoogleMap object directly, rather, you must obtain one from the

getMapAsync() method on a MapFragment. This class provides methods to set type

of map, add markers, add polyline or move camera etc.

Constants Description

MAP_TYPE_HYBRID Satellite maps with a transparent layer of major streets.

MAP_TYPE_NONE No base map tiles.

MAP_TYPE_NORMA
L Basic maps.

MAP_TYPE_SATELLIT
E Satellite maps with no labels.

MAP_TYPE_TERRAIN Terrain maps (Topographic data).

61

Lab Assignments

SET A

Write a program to perform Zoom In, Zoom Out operation and display Satellite view.

Write a program to perform Zoom In, Zoom Out operation and display Terrain view of current

location on Google Map.

Write a program to find the specific location of an Android device and display details of the

place like Address line, city with Geocoding.

Write a program to search a specific location on Google Map.

SET B

Write a program to calculate distance between two locations on Google Map.

Write a program to demonstrate navigation using Google Map.

Write a program to add Marker for indicating specific location using Google Map

SET C

Write a program to track an android device using mobile number and display the location on

Google Map.

Write a program to modify the above program to draw the path along a route on Google Map.

Signature of the instructor: ------------------------- Date:------------------------

Assignment Evaluation

0: Not Done 2: Late Complete 4: Complete

1: Incomplete 3: Needs Improvement 5: Well Done

Section II: Dot Net

1

ASSIGNMENT -A: DOT NET FRAMEWORK

Basic:

The .NET Framework is a software development platform that was introduced by
Microsoft in the late 1990 under the NGWS. On 13 February 2002, Microsoft launched
the first version of the .NET Framework, referred to as the .NET Framework 1.0.

.NET Framework is a virtual machine that provide a common platform to run an
application that was built using the different language such as C#, VB.NET, Visual
Basic, etc. It is also used to create a form based, console-based and web-based
application or services that are available in Microsoft environment. The .NET framework
is a pure object oriented, that similar to the Java language . But it is not a platform
independent as the Java. So, its application runs only to the windows platform.

The main objective of this framework is to develop an application that can run on
the windows platform.

IDE (Integrated Development Environment)

Visual Studio is the Integrated Development Environment (IDE) provided by Microsoft
in which developers can write and execute their program to develop various types of
applications such as Windows, Web-based, console-based application easily. It has a rich
collection of tools that are used to write and modify the programs and also help to detect
and correct the errors in your programs. It is not a language-specific IDE, it means Visual
Studio is not only for VB.NET language, but you can use this to write code in C#, visual
basic, C++, Python, JavaScript and many more languages supported by Visual Studio. It
supports 36 different languages that are used to develop an application. It has a built-in
compiler to run the application, and it is also available for Windows and Mac OS.

Architecture of Dot Net Framework

2

Components of .NET Framework

There are following components of .NET Framework:

1. CLR (Common Language Runtime)

2. CTS (Common Type System)

3. BCL (Base Class Library)

4. CLS (Common Language Specification)

5. FCL (Framework Class Library)

6. .NET Assemblies

7. XML Web Services

8. Window Services

CLR (common language runtime)

2

Components of .NET Framework

There are following components of .NET Framework:

1. CLR (Common Language Runtime)

2. CTS (Common Type System)

3. BCL (Base Class Library)

4. CLS (Common Language Specification)

5. FCL (Framework Class Library)

6. .NET Assemblies

7. XML Web Services

8. Window Services

CLR (common language runtime)

2

Components of .NET Framework

There are following components of .NET Framework:

1. CLR (Common Language Runtime)

2. CTS (Common Type System)

3. BCL (Base Class Library)

4. CLS (Common Language Specification)

5. FCL (Framework Class Library)

6. .NET Assemblies

7. XML Web Services

8. Window Services

CLR (common language runtime)

3

It is an important part of a .NET framework that works like a virtual component of the
.NET Framework to executes the different languages program like C#, Visual Basic, etc.
A CLR also helps to convert a source code into the byte code, and this byte code is
known as CIL (Common Intermediate Language) or MSIL (Microsoft Intermediate
Language). After converting into a byte code, a CLR uses a JIT compiler at run time that
helps to convert a CIL or MSIL code into the machine or native code.

CTS (Common Type System)

It specifies a standard that represent what type of data and value can be defined and
managed in computer memory at runtime. A CTS ensures that programming data defined
in various languages should beinteract with each other to share information. For example,
in C# we define data type as int, while in VB.NET we define integer as a data type.

BCL (Base Class Library)

The base class library has a rich collection of libraries features and functions that help to
implement many programming languages in the .NET Framework, such as C #, Visual
C++, and more. Furthermore, BCL divides into two parts:

1. User defined class library
o Assemblies - It is the collection of small parts of deployment an

application's part. It contains either the DLL (Dynamic Link Library) or exe
(Executable) file.

2. Predefined class library
o Namespace - It is the collection of predefined class and method that

present in .Net. In other languages such as, C we used header files, in java
we used package similarly we used "using system" in .NET, where using is
a keyword and system is a namespace.

CLS (Common language Specification)
It is a subset of common type system (CTS) that defines a set of rules and regulations
which should be followed by every language that comes under the .net framework. In
other words, a CLS language should be cross-language integration or interoperability. For
example, in C# and VB.NET language, the C# language terminate each statement with
semicolon, whereas in VB.NET it is not end with semicolon, and when these statements
execute in .NET Framework, it provides a common platform to interact and share
information with each other.

FCL (Framework Class Library)

4

It provides the various system functionality in the .NET Framework, that includes
classes, interfaces and data types, etc. to create multiple functions and different types of
application such as desktop, web, mobile application, etc. In other words, it can be
defined as, it provides a base on which various applications, controls and components are
built in .NET Framework.

5

ASSIGNMENT -B: VB.Net

Overview of VB.NET

The VB.NET stands for Visual Basic .Network Enabled Technologies. It is a simple,
high-level, object-oriented programming language developed by Microsoft in 2002 to
replace Visual Basic 6.
VB.NET is an object-oriented programming language. This means that it supports the
features of object-oriented programming which include encapsulation, polymorphism,
abstraction and inheritance.

Types of Applications that can be developed using VB.NET are :

 Windows Application
 Console Application
 Web Application

Microsoft Visual Studio Interface :
 Menubar
 Toolbar
 Toolbox
 Form Designer Window
 Code Window
 Properties Window
 Server Explorer
 Solution Explorer

A VB.NET define the following structure to create a program:
 Namespace declaration
 Procedure can be multiple
 Define a class or module
 Variables
 The Main procedure
 Statement and Expression
 Comments

Comments
In VB .NET, you write a comment by writing an apostrophe ' or writing REM. This
means the rest of the line will not be taken into account by the compiler.

6

Hello World Program in VB.Net

Create a Hello_Program.vb file in MYConsoleApp project and write the following code:
Imports System 'System is a Namespace

Module Hello_Program

Sub Main()
Console.WriteLine("Hello, Welcome to the world of VB.NET")
Console.WriteLine("Press any key to continue...")
Console.ReadKey()

End Sub
End Module

Compile and run the above program by pressing the F5 key, we get the follwoing output.

Output:

Data Types in VB.Net
Data types determine the type of data that any variable can store. Variables belonging to
different data types are allocated different amounts of space in the memory.VB.Net
provides a wide range of data types. The following table shows all the data types

Data Type Storage Allocation Value Range

Boolean
Depends on
implementing platform

True or False

Byte 1 byte 0 through 255 (unsigned)

SByte 1 byte -128 through 127 (signed)

UInteger 4 bytes 0 through 4,294,967,295 (unsigned)

ULong 8 bytes 0 through 18,446,744,073,709,551,615 (unsigned)

UShort 2 bytes 0 through 65,535 (unsigned)

Short 2 bytes -32,768 through 32,767 (signed)

7

Integer 4 bytes -2,147,483,648 through 2,147,483,647 (signed)

Long 8 bytes
-9,223,372,036,854,775,808 through
9,223,372,036,854,775,807(signed)

Single 4 bytes

-3.4028235E+38 through -1.401298E-45 for
negative values;

1.401298E-45 through 3.4028235E+38 for positive
values

Double 8 bytes

-1.79769313486231570E+308 through -
4.94065645841246544E-324, for negative values

4.94065645841246544E-324 through
1.79769313486231570E+308, for positive values

Decimal 16 bytes

0 through +/-
79,228,162,514,264,337,593,543,950,335 (+/-
7.9...E+28) with no decimal point; 0 through +/-
7.9228162514264337593543950335 with 28 places
to the right of the decimal

Char 2 bytes 0 through 65535 (unsigned)

String
Depends on
implementing platform

0 to approximately 2 billion Unicode characters

Date 8 bytes
0:00:00 (midnight) on January 1, 0001 through
11:59:59 PM on December 31, 9999

Object

4 bytes on 32-bit
platform
8 bytes on 64-bit
platform

Any type can be stored in a variable of type Object

Summary of Data Types :

Integer Values
 Byte
 Sbyte
 Integer
 Uinteger
 Long
 Ulong
 Short
 Ushort

Floating Point Values
 Decimal
 Single
 Double

Boolean Type Character Type

8

 Boolean  Char
 String

Date Type
 Date

Any type of Value
 Object

Example of Datatypes :

Module DataTypes
Sub Main()

Dim b As Byte
Dim n As Integer
Dim si As Single
Dim d As Double
Dim c As Char
Dim s As String
Dim bl As Boolean

b = 1
n = 1234567
si = 0.12345678901234566
d = 0.12345678901234566

c = "U and me"
s = "Me"

Console.Write(c & " and," & s & vbCrLf)
Console.WriteLine("We will learn VB.Net seriously")
Console.WriteLine("The Boolean Value", b1)
Console.WriteLine("The Integer Value", n)
Console.WriteLine("Lets see what happens to the floating point variables:")
Console.WriteLine("The Single: {0}, The Double: {1}", si, d)

Console.ReadKey()
End Sub

End Module

Type Conversion Functions
There are functions that we can use to convert from one data type to another. They
include:

 CBool (expression): converts the expression to a Boolean data type.

9

 CDate(expression): converts the expression to a Date data type.
 CDbl(expression): converts the expression to a Double data type.
 CByte (expression): converts the expression to a byte data type.
 CChar(expression): converts the expression to a Char data type.
 CLng(expression): converts the expression to a Long data type.
 CDec(expression): converts the expression to a Decimal data type.
 CInt(expression): converts the expression to an Integer data type.
 CObj(expression): converts the expression to an Object data type.
 CStr(expression): converts the expression to a String data type.
 CSByte(expression): converts the expression to a Byte data type.
 CShort(expression): converts the expression to a Short data type.

Variable Declaration

In VB.NET, the declaration of a variable involves giving the variable a name and
defining the data type to which it belongs. We use the following syntax:

Syntax : Dim <Variable_Name> As <Data_Type>

Example : Dim x As Integer

In the above example, 'x' is the variable name while Integer is the data type to which
variable x belongs.

Variable Initialization

Initializing a variable means assigning a value to the variable. The following example
demonstrates this:

Example-1 :

Dim x As Integer
x = 10

Example-2 :

Dim name As String
name = “Akshit”

Example-3 :

Dim flag As Boolean
flag = True

10

Input Output Functions used in Console Application

Output Functions :
1) Write() :

Write() method displays the output but do not provide a new line character.

Example :
Console.Write("One")
Console.Write("Two")
Output : OneTwo

2) WriteLine()
WriteLine() method displays the output and also provides a new line character it

the end of the string, This would set a new line for the next output.
Example :

Console.WriteLine("One")
Console.WriteLine("Two")
Output : One

Two

Input Functions : ReadLine(), Read(), ReadKey()

Console.ReadLine()
It read all the characters from user input. (and finish when press enter).
Note: It return a STRING so data type should be STRING.

Example 1:
Dim name As String
Console.WriteLine("Enter student name : ")
name = Console.ReadLine()
Console.WriteLine(name) o/p ------------ Sachin Saxena

or
Console.WriteLine("Student Name is = {0}", name)

o/p ------------ My Name is = Sachin Saxena
In this example, if you enter the string "Sachin Saxena" it read as it is. It means it
reads all characters until the end of line.

11

Example 2:
Dim sum As Integer
Console.WriteLine("Enter two numbers : ")
sum = CInt(Console.ReadLine()) + CInt(Console.ReadLine())
Console.WriteLine("Addition = {0}", sum)

Example 3:
Dim num1, num2, sum As Integer
Console.WriteLine("Enter two numbers : ")
num1 = Console.ReadLine()
num2 = Console.ReadLine()
sum = num1 + num2
Console.WriteLine("num1 = {0} num 2 = {1}", num1, num2)
Console.WriteLine("Addition = {0}", sum)

Console.Read()
It only accept single character from user input and return its ASCII Code.
Note: Data type should be integer because it returns an integer value as ASCII.

Example :
Dim value As Integer
value = Console.Read()
Console.WriteLine("Value Read from console is : ", value)

As input given is "a" and it return its ASCII value is 97

Console.ReadKey()
It reads that which key is pressed by user and returns its name.
Example :

Dim key As ConsoleKeyInfo
key = Console.ReadKey()
Console.WriteLine("You Pressed : {0}", key.Key)

Note: It is STRUCT Data type which is ConsoleKeyInfo.
If you press different Buttons from keyboard like Escape, Spacebar, Enter, R, P, Z, Minus
and it return name.

12

Operators
Operator is a symbol that is used to perform various operations on variables. VB.NET has
different types of Operators that help in performing logical and mathematical operations
on data values.

Following are the different types of Operators available in VB.NET:
 Arithmetic Operators
 Comparison Operators
 Assignment Operators
 Logical Operators

Arithmetic Operators :
You can use arithmetic operators to perform various mathematical operations in
VB.NET.
Assume variable A = 2 and variable B = 7, then –

Operator Description Example

^ Raises one operand to the power of another B^A will give 49

+ Adds two operands A + B will give 9

- Subtracts second operand from the first A - B will give -5

* Multiplies both operands A * B will give 14

/
Divides one operand by another and returns a
floating point result

B / A will give 3.5

\
Divides one operand by another and returns an
integer result

B \ A will give 3

MOD
Modulus Operator and remainder of after an
integer division

B MOD A will give 1

Example :

Module Module1
Sub Main()

Dim no1 As Integer = 11
Dim no2As Integer = 5
Dim no3 As Integer = 2
Dim res1 As Integer
Dim res2 As Single
res1 = no1 + res2

13

Console.WriteLine(" Result of 11 + 5 is {0} ", res1)
res1 = no1 – no2

Console.WriteLine(" Result of 11 - 5 is {0} ", res1)
res1 = no1 * no2

Console.WriteLine(" Result of 11 * 5 is {0} ", res1)
res2 = no1 / no2

Console.WriteLine(" Result of 11 / 5 is {0}", res2)
res1 = no1 \ no2

Console.WriteLine(" Result of 11 \ 5 is {0}", res1)
res1 = no1 Mod no2

Console.WriteLine(" Result of 11 MOD 5 is {0}", res1)
res1 = no2^ no2

Console.WriteLine(" Result of 5 ^ 5 is {0}", res1)
Console.ReadLine()

End Sub
End Module

Comparison Operators

These operators are used for making comparisons between variables.
Assume variable A holds 10 and variable B holds 20, then –

Operator Description Example

=
Checks if the values of two operands are
equal or not; if yes, then condition becomes
true.

(A = B) is not true.

<>
Checks if the values of two operands are
equal or not; if values are not equal, then
condition becomes true.

(A <> B) is true.

>
Checks if the value of left operand is greater
than the value of right operand; if yes, then
condition becomes true.

(A > B) is not true.

<
Checks if the value of left operand is less
than the value of right operand; if yes, then
condition becomes true.

(A < B) is true.

>=
Checks if the value of left operand is greater
than or equal to the value of right operand; if
yes, then condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less (A <= B) is true.

14

than or equal to the value of right operand; if
yes, then condition becomes true.

Assignment Operators :

There are following assignment operators supported by VB.Net –

Operator Description Example

=
Simple assignment operator, Assigns values
from right side operands to left side operand

C = A + B will assign value of A +
B to C

+=
Add and assignment operator, It adds right
operand to the left operand and assigns the
result to left operand

C += A is equivalent to C = C + A

-=
Subtract and assignment operator, It subtracts
right operand from the left operand and
assigns the result to left operand

C -= A is equivalent to C = C - A

*=
Multiply and assignment operator, It
multiplies right operand with the left operand
and assigns the result to left operand

C *= A is equivalent to C = C * A

/=

Divide AND assignment operator, It divides
left operand with the right operand and
assigns the result to left operand (floating
point division)

C /= A is equivalent to C = C / A

\=

Divide and assignment operator, It divides
left operand with the right operand and
assigns the result to left operand (Integer
division)

C \= A is equivalent to C = C \A

^=

Exponentiation and assignment operator. It
raises the left operand to the power of the
right operand and assigns the result to left
operand.

C^=A is equivalent to C = C ^ A

&=
Concatenates a String expression to a String
variable or property and assigns the result to
the variable or property.

Str1 &= Str2 is same as

Str1 = Str1 & Str2

15

Logical Operators

Following table shows all the logical operators supported by VB.Net.

Assume variable A holds Boolean value True and variable B holds Boolean value False,
then −

Operator Description Example

And

It is the logical as well as bitwise AND operator. If both
the operands are true, then condition becomes true.
This operator does not perform short-circuiting, i.e., it
evaluates both the expressions.

(A And B) is False.

Or

It is the logical as well as bitwise OR operator. If any of
the two operands is true, then condition becomes
true. This operator does not perform short-circuiting,
i.e., it evaluates both the expressions.

(A Or B) is True.

Not
It is the logical as well as bitwise NOT operator. Use to
reverses the logical state of its operand. If a condition
is true, then Logical NOT operator will make false.

Not(A And B) is True.

Xor

It is the logical as well as bitwise Logical Exclusive OR
operator. It returns True if both expressions are True
or both expressions are False; otherwise it returns
False. This operator does not perform short-circuiting, it
always evaluates both expressions and there is no short-
circuiting counterpart of this operator.

A Xor B is True.

AndAlso
It is the logical AND operator. It works only on Boolean
data. It performs short-circuiting.

(A AndAlso B) is False.

OrElse
It is the logical OR operator. It works only on Boolean
data. It performs short-circuiting.

(A OrElse B) is True.

Example :

X=10, Y = 30

(X < 10) AndAlso (Y < 20)

Control Structure
1. Decision Making Statements
2. Loops Statements

16

Decision Making Statements :

1. If statement :
It executes a set of code when a condition is true.

2. If...Then... Else statement :
It selects one of two sets of lines to execute.

3. If...Then...ElseIf statement (Nested If statement) :
It selects one of many sets of lines to execute.

4. Select Case statement :
It select one of many sets of lines to execute.

1) If Then Statement If Then statement is a control structure which executes a set of code only
when the given condition is True.

Syntax:
If [Condition] Then

[Statements]
In the above syntax when the Condition is true then the Statements after Then are executed.

Example:
Dim x As Integer
x = 9
If (x Mod 2) = 0 Then

Console.WriteLine("x is an even number")
End If

2) If Then Else Statement If Then Else statement is a control structure which executes different
set of code statements when the given condition is true or false.

Syntax:
If [Condition] Then

[Statements]
Else

[Statements]
In the above syntax when the Condition is true, the Statements after Then are executed. If the
condition is false then the statements after the Else part is executed.
Example:

Dim x As Integer
x = 9

If (x Mod 2) = 0 THEN
Console.WriteLine("x is an even number")

Else

17

Console.WriteLine("x is an odd number")
End If

3) Nested If Then Else Statement Nested If..Then..Else statement is used to check multiple
conditions using if then else statements nested inside one another.
Syntax :

If condition1 Then
Statement1
statement2

ElseIf condition2 Then
Statement3
Statement4

Else
Statement5
Statement6

End If

Example:
Dim x As Integer
x = Console.ReadLine()
If x > 0 Then

Console.WriteLine("It is positive.")
Elseif x<0

Console.WriteLine("It is negative.")
Else

Console.WriteLine("It is zeo.")
End If

Case Statement Select case statement is used when the expected results for a condition can be
known previously so that different set of operations can be done based on each condition.
Syntax:

Select Case Expression
Case Expression1

Statement1
Case Expression2

Statement2
Case Expressionn

Statementn
...

Case Else
Statement

End Select

18

In the above syntax, the value of the Expression is checked with Expression1..n to check if the
condition is true. If none of the conditions are matched the statements under the Case Else is
executed.

Example - 1:
Dim grade As Char

grade = "B"
Select grade

Case "A"
Console.WriteLine("Excellent!")

Case "B", "C"
Console.WriteLine("Well done")

Case "D"
Console.WriteLine("You passed")

Case "F"
Console.WriteLine("Better try again")

Case Else
Console.WriteLine("Invalid grade")

End Select
Example - 2:

Dim no As Integer
Console.WriteLine("Enter no. between 1-10")
no = Console.ReadLine()
Select Case no

Case 1, 3, 5, 7, 9
Console.WriteLine("Odd number")

Case 2, 4, 6, 8, 10
Console.WriteLine("Even number")

Case Else
Console.WriteLine("Invalid number-OutofRange")

End Select

Looping Statements : A loop statement allows us to execute a statement or group of
statements multiple times.

1) For Next Loop Statement For Next Loop Statement executes a set of statements repeatedly
in a loop for the given initial, final value range with the specified step by step increment or
decrement value.
Syntax:

For counter = start To end [Step]
[Statement]

Next [counter]

19

In the above syntax the Counter is range of values specified using the Start, End parameters.
The Step specifies step increment or decrement value of the counter for which the statements are
executed.
Example:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
Dim i As Integer
Dim j As Integer
j = 0
For i = 1 To 10 Step 1
j = j + 1
MsgBox("Value of j is::" & j)
Next i
End Sub

Description:
In the above For Next Loop example the counter value of i is set to be in the range of 1 to 10 and
is incremented by 1. The value of j is increased by 1 for 10 times as the loop is repeated.

For Each...Next For Each...Next repeats a group of statements for each element in a
collection. For-Each, requires a collection. This loop is used for accessing and
manipulating all elements in an array or a VB.Net collection.
Syntax :

For Each element [As datatype] In group
statements

Next [element]

Example : Print elements of an array
Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Dim arr() As Integer = {1, 3, 5, 7, 9}
Dim x As Integer

For Each x In arr 'displaying the values
MsgBox("Value of x is::" & x)

Next
End Sub

Description:
In the above For Each….Next Loop example the value of array is stored in variable x and
displayed in message box. The loop is repeated until all the values are fetched. Total number of
iteration of For Each….Next loop is equal to the total number of elements in array. In above
example For Each….Next loop executes 5 times as there are 5 values in an array.

20

3) Do While Loop Statement Do While Loop Statement is used to execute a set of statements
only if the condition is satisfied. But the loop get executed once for a false condition once before
exiting the loop. This is also known as Entry Controlled loop.

Syntax:
Do While [Condition]
[Statements]
Loop

In the above syntax the Statements are executed till the Condition remains true.
Example:

Private Sub Form1_Load(ByVal sender As System.Object,ByVal e As
System.EventArgs) Handles MyBase.Load
Dim a As Integer
a = 1
Do While a < 100
a = a * 2
MsgBox("Product is::" & a)
Loop
End Sub

Description:
In the above Do While Loop example the loop is continued after the value 64 to display 128
which is false according to the given condition and then the loop exits.

4) While Wend Statement While Wend Statement is a looping statement where a condition is
checked first, if it is true a set of statements are executed. The condition can also become false
atleast once while this statement is used.
Syntax:

While condition
[statements]

Wend
In the above syntax the Statements are executed when the Condition is true. The condition may
also become false while the statements are executed.

Example:
Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
Dim n As Integer
n = 1

While n <= 1
n = n + 1
MsgBox("First incremented value is:" & n)

End While
End Sub

Description:
In the above example, the value of n is 2 in the loop, which is false according to the condition
but the loop is continued until the condition is checked. Thus the while wend statement can be
used.

21

5) While Statement Do Loop While Statement executes a set of statements and checks the
condition, this is repeated until the condition is true. .It is also known as an Exit Control loop
Syntax:

Do
[Statements]

Loop While [Condition]
In the above syntax the Statements are executed first then the Condition is checked to find if it
is true.
Example:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
Dim cnt As Integer

Do
cnt = 10
MsgBox("Value of cnt is::" & cnt)

Loop While cnt <= 9
End Sub

Description:
In the above Do Loop While example, a messa

6) Do Loop Until Statement Do Loop Until Statement executes a set of statements until a
condition becomes false, this is an infinite loop might have to be terminated using Ctrl + Break .
Syntax:

Do
[Statements]

Loop Until [Condition]
In the above syntax the Statements are executed until the Condition becomes false.
Example:
Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
Dim X As String

Do
X = InputBox$("Correct Password Please")

Loop Until X = "Ranger"
End Sub
Description:
In the above Do Until Loop example, a input box is displayed until the correct password is typed.

22

Windows Applications

Form Control :

Properties – Following properties can be set or read during application execution.

Sr.
No

Properties Description

1 BackColor Sets the form background color.

2 FormBorderStyle The BorderStyle property determines the style of the form's
border and the appearance of the form −

 None − Borderless window that can't be resized.
 Sizable − This is default value and will be used for

resizable window that's used for displaying regular
forms.

 Fixed3D − Window with a visible border, "raised"
relative to the main area. In this case, windows can't be
resized.

 FixedDialog − A fixed window, used to create dialog
boxes.

 FixedSingle − A fixed window with a single line
border.

 FixedToolWindow − A fixed window with a Close
button only. It looks like the toolbar displayed by the
drawing and imaging applications.

 SizableToolWindow − Same as the FixedToolWindow
but resizable. In addition, its caption font is smaller
than the usual.

3 ControlBox By default, this property is True and you can set it to False to
hide the icon and disable the Control menu.

4 Height This is the height of the Form in pixels.

5 MinimizeBox By default, this property is True and you can set it to False to
hide the Minimize button on the title bar.

23

6 MaximizeBox By default, this property is True and you can set it to False to
hide the Maximize button on the title bar.

7 MinimumSize This specifies the minimum height and width of the window
you can minimize.

8 MaximumSize This specifies the maximum height and width of the window
you maximize.

9 Name This is the actual name of the form.

10 StartPosition This property determines the initial position of the form when
it's first displayed. It will have any of the following values −

 CenterParent − The form is centered in the area of its
parent form.

 CenterScreen − The form is centered on the monitor.
 Manual − The location and size of the form will

determine its starting position.

 WindowsDefaultBounds − The form is positioned at
the default location and size determined by Windows.

 WindowsDefaultLocation − The form is positioned at
the Windows default location and has the dimensions
you've set at design time.

11 Text The text, which will appear at the title bar of the form.

12 TopMost This property is a True/False value that lets you specify
whether the form will remain on top of all other forms in your
application. Its default property is False.

13 Width This is the width of the form in pixel.

14 AcceptButton The button that's automatically activated when you press
Enter, no matter which control has the focus at the time.
Usually the OK button on a form is set as AcceptButton for a
form.

15 CancelButton The button that's automatically activated when you hit the Esc
key.

24

Usually, the Cancel button on a form is set as CancelButton
for a form.

16 AutoScroll This Boolean property indicates whether scroll bars will be
automatically attached to the form if it is resized to a point that
not all its controls are visible.

Form Events:

Following table lists down various important events related to a form −

Sr. No. Event Description

1 Click Occurs when the form is clicked.

2 Closed Occurs before the form is closed.

3 DoubleClick Occurs when the form control is double-clicked.

4 GotFocus Occurs when the form control receives focus.

5 LostFocus Occurs when the form loses focus.

6 KeyDown Occurs when a key is pressed while the form has focus.

7 KeyPress Occurs when a key is pressed while the form has focus.

8 KeyUp Occurs when a key is released while the form has focus.

9 Load Occurs before a form is displayed for the first time.

10 MouseDown Occurs when the mouse pointer is over the form and a mouse
button is pressed.

11 MouseEnter Occurs when the mouse pointer enters the form.

12 MouseLeave Occurs when the mouse pointer leaves the form.

13 MouseMove Occurs when the mouse pointer is moved over the form.

25

14 MouseUp Occurs when the mouse pointer is over the form and a mouse
button is released.

Examples on Form Event :

Private Sub Form1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles
Me.Click

MsgBox("Form Click Event raised")

End Sub

Private Sub Form1_DoubleClick(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.DoubleClick

MsgBox("Form Double Click Event raised")
End Sub

Private Sub Form1_FormClosed(ByVal sender As Object, ByVal e As
System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed

MsgBox("Form Closed Event raised")

End Sub

Button:

Properties – Following properties are commonly used properties of the Button control −.

Sr. No. Property & Description

1 AutoSizeMode

Gets or sets the mode by which the Button automatically resizes itself

2 BackColor

Gets or sets the background color of the control.

3 ForeColor

Gets or sets the foreground color of the control.

4 Image

26

Gets or sets the image that is displayed on a button control.

5
Location

Gets or sets the coordinates of the upper-left corner of the control
relative to the upper-left corner of its container.

6 TabIndex

Gets or sets the tab order of the control within its container.

7 Text

Gets or sets the text associated with this control.

TextBox:

The TextBox Control allows you to enter text on your form during runtime.

Properties – Following properties are commonly used properties of the TextBox control
–

Sr.
No.

Property & Description

1 Text
Gets or sets the current text in the TextBox.

2 Font
Gets or sets the font of the text displayed by the control.

3 ForeColor
Gets or sets the foreground color of the control.

4 Enabled
For enabling the textbox control

5 Multiline
Gets or sets a value indicating whether this is a multiline TextBox control.

6 PasswordChar
Gets or sets the character used to mask characters of a password in a single-
line TextBox control.

27

7 ReadOnly
Gets or sets a value indicating whether text in the text box is read-only.

8 ScrollBars
Gets or sets which scroll bars should appear in a multiline TextBox control.
This property has values −
None, Horizontal, Vertical, Both

9 TabIndex
Gets or sets the tab order of the control within its container.

10 TextAlign
Gets or sets how text is aligned in a TextBox control. This property has
values – Left, Right, Center

11 TextLength
Gets the length of text in the control.

12 WordWrap
Indicates whether a multiline text box control automatically wraps words to
the beginning of the next line when necessary.

The Methods of the TextBox Control :

The following are some of the commonly used methods of the TextBox control –

Sr.No. Method Name & Description

1 AppendText
Appends text to the current text of a text box.

2 Clear
Clears all text from the text box control.

3 Copy
Copies the current selection in the text box to the Clipboard.

4 Cut
Moves the current selection in the text box to the Clipboard.

5 Paste
Replaces the current selection in the text box with the contents of
the Clipboard.

6 Undo

28

Undoes the last edit operation in the text box.

 SelectionStart - for setting or getting the starting point for the TextBox
Control.

 SelectionLength - for setting or getting the number of characters that have
been selected in the TextBox Control.

 SelectedText - returns the TextBox Control that is currently selected.

Events of the TextBox Control :

The following are some of the commonly used events of the Text control –

Sr.No. Event & Description

1 Click
Occurs when the control is clicked.

2 DoubleClick
Occurs when the control is double-clicked.

3 TextChanged
Occurs when the Text within the textbox changes.

Creating TextBox at Runtime:

Dim txt1, txt2 As New TextBox //Declare variables of type

txt1.Name = "txtNo1" //Set the properties
txt1.Left = 100
txt1.Top = 50
txt1.Visible = True

Me.Controls.Add(txt1) //Add the control on form

txt2.Name = "txtNo2"
txt2.Left = 100
txt2.Top = 150
txt2.Visible = True
Me.Controls.Add(txt2)

Public Class Form1

29

Dim txtNo1 As New TextBox
Dim btn1 As New Button()

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

txtNo1.Left = 100
txtNo1.Top = 200
txtNo1.Visible = True
Me.Controls.Add(txtNo1)

End Sub

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

'Dim btn1 As Button = New Button()

btn1.Parent = Me
btn1.Name = "btn1"
btn1.Top = 10
btn1.Text = "Btn1"
Me.Controls.Add(btn1)

'adding handler for click event
AddHandler btn1.Click, AddressOf HandleDynamicButtonClick

End Sub

Private Sub HandleDynamicButtonClick(ByVal sender As Object, ByVal e As
EventArgs)

MsgBox(txtNo1.Text)
End Sub

End Class

Label :

The Label Control allows you to enter text on your form during runtime.

Properties – Following properties are commonly used properties of the Label control –
Sr.No. Property & Description

1 Autosize

30

Gets or sets a value specifying if the control should be
automatically resized to display all its contents.

2 BorderStyle
Gets or sets the border style for the control.

3 FlatStyle
Gets or sets the flat style appearance of the Label control

4 Font
Gets or sets the font of the text displayed by the control.

5 FontHeight
Gets or sets the height of the font of the control.

6 ForeColor
Gets or sets the foreground color of the control.

7 PreferredHeight
Gets the preferred height of the control.

8 PreferredWidth
Gets the preferred width of the control.

10 Text
Gets or sets the text associated with this control.

11 TextAlign
Gets or sets the alignment of text in the label.

Anchoring and Docking Controls to a Form :

Anchoring Control:
 The Anchor property lets you attach one or more edges of the control to

corresponding edges of the form.

 The anchored edges of the control maintain the same distance from the
corresponding edges of the form.

 Place a TextBox control on a new form, set its MultiLine property to True, and
then open the control’s Anchor property in the Properties window.

Docking Control:
 Dock property, which determines how a control will dock on the form. The default

value of this property is None.

31

CheckBox :

The CheckBox control allows the user to set true/false or yes/no type options. The user
can select or deselect it. When a check box is selected it has the value True, and when it
is cleared, it holds the value False.

Properties of the CheckBox Control :

The following are some of the commonly used properties of the CheckBox control −

Sr. No. Property & Description

1 Appearance
Gets or sets a value determining the appearance of the check box.

2 CheckAlign
Gets or sets the horizontal and vertical alignment of the check
mark on the check box.

3 Checked
Gets or sets a value indicating whether the check box is selected.

4 CheckState
Gets or sets the state of a check box.

5 Text
Gets or sets the caption of a check box.

6 ThreeState
Gets or sets a value indicating whether or not a check box should
allow three check states rather than two.

Events of the CheckBox Control :

The following are some of the commonly used events of the CheckBox control −

Sr. No. Event & Description

1 AppearanceChanged
Occurs when the value of the Appearance property of the check
box is changed.

2 CheckedChanged
Occurs when the value of the Checked property of the CheckBox

32

control is changed.

3 CheckStateChanged
Occurs when the value of the CheckState property of the
CheckBox control is changed.

Following Example shows use of CheckState Property and CheckStateChanged
Event

Private Sub CheckBox1_CheckStateChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles CheckBox1.CheckStateChanged

If CheckBox1.CheckState = CheckState.Checked Then
MsgBox("Yes")

End If

If CheckBox1.CheckState = CheckState.Indeterminate Then
MsgBox("May Be")

End If

If CheckBox1.CheckState = CheckState.Unchecked Then
MsgBox("No")

End If

End Sub

Example 2:
Add four check boxes on form. The check boxes will allow the users to choose the
programming languages. When the user clicks the Submit button, he/she gets an
appropriate message.
Solution:
If CheckBox1.Checked = True Then

str &= CheckBox1.Text
str &= " "

End If

RadioButton :

33

The RadioButton control is used to provide a set of mutually exclusive options.
The user can select one radio button in a group.
If you need to place more than one group of radio buttons in the same form, you should
place them in different container controls like a GroupBox control.

Properties :
The following are some of the commonly used properties of the RadioButton control –

Sr.
No.

Property & Description

1 Appearance
Gets or sets a value determining the appearance of the radio button.

2 CheckAlign
Gets or sets the location of the check box portion of the radio
button.

3 Checked
Gets or sets a value indicating whether the control is checked.

4 Text
Gets or sets the caption for a radio button.

ListBox:

The ListBox represents a Windows control to display a list of items to a user. A user can
select an item from the list. It allows the programmer to add items at design time by using
the properties window or at the runtime.
Properties:
The following are some of the commonly used properties of the ListBox control –

Sr.
No.

Property & Description

1 AllowSelection : Gets a value indicating whether the ListBox currently enables
selection of list items.

2 HorizontalScrollBar :Gets or sets the value indicating whether a horizontal scrollbar
is displayed in the list box.

34

3 Items : Gets the items of the list box.

4 MultiColumn : Gets or sets a value indicating whether the list box supports multiple
columns.

5 ScrollAlwaysVisible :Gets or sets a value indicating whether the vertical scroll bar is
shown at all times.

6 SelectedIndex :Gets or sets the zero-based index of the currently selected item in a list
box.

7 SelectedIndices : Gets a collection that contains the zero-based indexes of all
currently selected items in the list box.

8 SelectedItem: Gets or sets the currently selected item in the list box.

9 SelectedItems :Gets a collection containing the currently selected items in the list box.

10 SelectionMode
Gets or sets the method in which items are selected in the list box. This property has
values −

 None – No item can be selected
 One – Only one item can be selected
 MultiSimple – Multiple items can be selected
 MultiExtended – Multiple items can be selected with the help of Shift Ctrl and

arrow key

11 Sorted
Gets or sets a value indicating whether the items in the list box are sorted
alphabetically.

12 Text
Gets or searches for the text of the currently selected item in the list box.

13 TopIndex
Gets or sets the index of the first visible item of a list box.

Adding Items to ListBox at Runtime :

Add() method : It is used to add items in ListBox at Runtime
Syntax :

ListBoxName.Items.Add(“DataItme”)
Example :

lstCity.Items.Add(“Amravati”)

35

Insert() method : It is used to insert items at particular position in ListBox at Runtime
Syntax :

ListBoxName.Items.Insert(Index, “DataItme”)
Example :

lstCity.Items.Insert(2,“Amravati”)

Count() method :
It returns the total number of items in the ListBox

Syntax :
Variable name = ListBoxName.Items.Count

Example :
n = lstCity.Items.Count

Clear() method : It is used to clear the ListBox
Syntax :

ListBoxName.Items.Clear()
Example :

lstCity.Items.Clear()

Removing Items from ListBox at Runtime :

Remove() and RemoveAt() methods :
These two methods are used to remove items from ListBox at Runtime

i) Remove() : Removes item by passing corresponding item.
Syntax :

ListBoxName.Items.Remove(ItemName)
Example :
i) lstCity.Items.Remove(“Pune”) : It removes city Pune from ListBox lstCity

ii) lstCity.Items.Remove(lstCity.SelectedItem) : It removes city Pune from ListBox
lstCity
ii) RemoveAt() : Removes item by passing corresponding index.
Syntax :

ListBoxName.Items.RemoveAt(Index)
Example :
i) lstCity.Items.RemoveAt(2) : It removes city placed at index 2 from ListBox lstCity

ii) lstCity.Items.RemoveAt(lstCity.SeletedIndex) : It removes currently selected City
from ListBox lstCity

Events of the ListBox Control :

36

The following are some of the commonly used events of the ListBox control –

Sr.No. Event & Description

1 Click
Occurs when a list box is selected.

2 SelectedIndexChanged
Occurs when the SelectedIndex property of a list box is changed.

ComboBox Control :
 The ComboBox control is used to display a drop-down list of various items.

 It is a combination of a text box in which the user enters an item and a drop-
down list from which the user selects an item.

Properties of the ComboBox Control :

Sr.No. Property & Description

1 DropDownStyle : It specifies the appearance and behavior of the ComboBox
Values : 1) Simple

2) DropDown
3) DropDownList

2 ItemHeight
Gets or sets the height of an item in the combo box.

3 Items
Gets an object representing the collection of the items contained in this
ComboBox.

4 MaxDropDownItems
Gets or sets the maximum number of items to be displayed in the drop-down part
of the combo box.
To apply this first set the property IntegralHeight = False

5 MaxLength
Gets or sets the maximum number of characters a user can enter in the editable
area of the combo box.

6 SelectedIndex
Gets or sets the index specifying the currently selected item.

7 SelectedItem
Gets or sets currently selected item in the ComboBox.

37

8 SelectedText
Gets or sets the text that is selected in the editable portion of a ComboBox.

9 Sorted
Gets or sets a value indicating whether the items in the combo box are sorted.

10 Text
Gets or sets the text associated with this control.

RichTextBox :
The RichTextBox control allows the user to display, enter, and edit text while also
providing more advanced formatting features than the conventional TextBox control.
Methods :
1] SaveFile : The SaveFile method saves the contents of the control to a disk file.

Syntax : RichTextBox1.SaveFile(path, filetype)
Example :

2] LoadFile : The LoadFile method loads a text or RTF file to the control.
Syntax : RichTextBox1.LoadFile(path, filetype)
Example :

Properties :
Following properties are used to read or change the alignment of one or more paragraphs:

 SelectionIndent : Sets / Gets the left indentation of paragraph.

 SelectionRightIndent : Sets / Gets the right indentation of paragraph.

 SelectionHangingIndent : Indents all other lines of paragraph with respect to
SelectionIndent.

Example:
RichTextBox1.SelectionIndent = 20
RichTexBox1.SelectionHangingIndent = -25
RichTextBox1.RightIndent = 10

Formatting Text of RichTextBox :
Dim fd As New FontDialog
fd.ShowDialog()
TextBox1.Font = fd.Font

38

MsgBox () Function

The objective of MsgBox is to produce a pop-up message box and prompt the user to click on a
command button before he /she can continues. This format is as follows:

myMsg=MsgBox(Prompt, Style Value, Title)
The first argument, Prompt, will display the message in the message box. The Style Value will
determine what type of command buttons appear on the message box, please refer to the below
Table for types of command button displayed. The Title argument will display the title of the
message board.

Style Value Named Constant Buttons Displayed

0 vbOkOnly Ok button

1 vbOkCancel Ok and Cancel buttons

2 vbAbortRetryIgnore Abort, Retry and Ignore buttons.

3 vbYesNoCancel Yes, No and Cancel buttons

4 vbYesNo Yes and No buttons

5 vbRetryCancel Retry and Cancel buttons

We can use named constants in place of integers for the second argument to make the programs
more readable.

For example:
myMsg=MsgBox("Click OK to Proceed", 1, "Startup Menu")

and
myMsg=Msg("Click OK to Proceed". vbOkCancel,"Startup Menu")

are the same.

myMsg is a variable that holds values that are returned by the MsgBox () function. The values
are determined by the type of buttons being clicked by the users. It has to be declared as Integer
data type in the procedure or in the general declaration section. Below table shows the values, the
corresponding named constant and buttons.

Value Named Constant Button Clicked

1 vbOk Ok button

2 vbCancel Cancel button

3 vbAbort Abort button

4 vbRetry Retry button

5 vbIgnore Ignore button

39

6 vbYes Yes button

7 vbNo No button

Example:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button1.Click

Dim testmsg As Integer
testmsg = MsgBox("Click to test", 1, "Test message")
If testmsg = 1 Then

MessageBox.Show("You have clicked the OK button")
Else

MessageBox.Show("You have clicked the Cancel button")
End If

End Sub

You can add an icon besides the message. There are four types of icons available as shown in
Table

Value Named Constant Icon

16 vbCritical

3 vbQuestion

48 vbExclamation

64 vbInformation

Example:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button1.Click

Dim testMsg As Integer
testMsg = MsgBox("Click to Test", vbYesNoCancel + vbExclamation, "Test

Message")
If testMsg = 6 Then

MessageBox.Show("You have clicked the yes button")
ElseIf testMsg = 7 Then

MessageBox.Show("You have clicked the NO button")
Else

MessageBox.Show("You have clicked the Cancel button")
End If

40

End Sub

The first argument, Prompt, will display the message

The InputBox() Function

An InputBox() function will display a message box where the user can enter a value or a
message in the form of text.
Format of InputBox Function:
myMessage=InputBox(Prompt, Title, default_text, x-position, y-position)

myMessage is a variant data type but typically it is declared as string, which accept the message
input by the users.
The arguments are explained as follows:

Prompt - the message displayed normally as a question asked.
Title - The title of the Input Box.
default-text - The default text that appears in the input field where users can use it as his
intended input or he may change to the message he wish to enter.
x-position and y-position - the position or tthe coordinates of the input box.

InputBox(Prompt, Title, default_text, x-position, y-position)
The parameters remain the same.

Example:
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button1.Click

Dim userMsg As String
userMsg = Microsoft.VisualBasic.InputBox("What is your message?", "Message Entry

Form", "Enter your messge here", 500, 700)
If userMsg <> "" Then

MessageBox.Show(userMsg)
Else

MessageBox.Show("No Message")
End If

End Sub

41

The InputBox will appear as shown in the figure below when you press the command button.

42

Predefined Dialog Box in VB.Net:

 There are many built-in dialog boxes to be used in Windows forms for various tasks
like opening and saving files, printing a page, providing choices for colors, fonts,
page setup, etc., to the user of an application.

 The ShowDialog method is used to display all the dialog box controls at run-time.
 The ShowDialog method returns a value of the type of DialogResult enumeration.

The values of DialogResult enumeration are −
 Abort − returns DialogResult. Abort value, when user clicks an Abort button.
 Cancel − returns DialogResult. Cancel, when user clicks a Cancel button.
 Ignore − returns DialogResult. Ignore, when user clicks an Ignore button.
 No − returns DialogResult. No, when user clicks a No button.
 None − returns nothing and the dialog box continues running.
 OK − returns DialogResult. OK, when user clicks an OK button
 Retry − returns DialogResult. Retry , when user clicks an Retry button
 Yes − returns DialogResult. Yes, when user clicks an Yes button

1] ColorDialog : It represents a common dialog box that displays available colors along
with controls that enable the user to define custom colors.

Example :
Dim ColorDialog1 As New ColorDialog
Private Sub Button1_Click(sender As Object, e As EventArgs) Handles
Button1.Click

If ColorDialog1.ShowDialog < > Windows.Forms.DialogResult.Cancel Then
Label1.ForeColor = ColorDialog1.Color

End If
End Sub

2] FontDialog : It prompts the user to choose a font from among those installed on the
local computer and lets the user select the font, font size, and color.

Example :
Dim FontDialog1 As New FontDialog
If FontDialog1.ShowDialog <> Windows.Forms.DialogResult.Cancel Then

RichTextBox1.ForeColor = FontDialog1.Color
RichTextBox1.Font = FontDialog1.Font

End If

3] OpenFileDialog :It prompts the user to open a file and allows the user to select a file
to open.

43

Example:
Dim OpenFileDialog1 As New OpenFileDialog
If OpenFileDialog1.ShowDialog <> Windows.Forms.DialogResult.Cancel Then

PictureBox1.Image = Image.FromFile(OpenFileDialog1.FileName)
End If

4] SaveFileDialog : It prompts the user to select a location for saving a file and allows
the user to specify the name of the file to save data.

Example :
SaveFileDialog1.Filter = "TXT Files (*.txt*)|*.txt"

If SaveFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK _
Then

My.Computer.FileSystem.WriteAllText _
(SaveFileDialog1.FileName, RichTextBox1.Text, True)

End If

5] PrintDialog : It lets the user to print documents by selecting a printer and choosing
which sections of the document to print from a Windows Forms application.

Example :
PrintDialog1.Document = PrintDocument1

PrintDialog1.PrinterSettings = PrintDocument1.PrinterSettings
PrintDialog1.AllowSomePages = True

If PrintDialog1.ShowDialog = DialogResult.OK Then
PrintDocument1.PrinterSettings = PrintDialog1.PrinterSettings
PrintDocument1.Print()

End If

44

Assignment 1:

Set A
1. Write a Vb.net program to accept string and count the number of words and display the

count.
2. Write VB.Net program to covert decimal number into binary, hexadecimal, and octal

number.
3. Write a Vb.net program to print second highest value in an array.

Set B

1. Write a Vb.net program to find Prime Numbers between 1 to 500.
2. Write a Vb.net program to find Spy Numbers between 100 to 500.
3. Write a Vb.net program to check whether entered string is palindrome or not.

Set C

1. Write a Vb.net program to check whether entered number is Spy Number or not Using
Console Application.
[Note : A positive integer is called a spy number if the sum and product of its digits are
equal.]

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

45

Assignment 2

Set A

1. Write a Vb.net program to design the following form, accept the numbers through textbox
and add them into the ListBoxe1 by clicking on Add button. When user click on Prime
button then all the prime numbers from ListBox1 should get added into ListBox2.

2. Write a Vb.net program for blinking an image.
3. Design a Vb.net form to pick a date from DateTimePicker Control and display day, month

and year in separate text boxes.

Set B

1. Write VB.Net program to add three text boxes at runtime. Allow user to enter values and
then display Maximum and Minimum value using message box after click on command
button.

2. Write VB .Net program to take three text boxes and two buttons on the form. Enter different
strings in first and second textbox. On clicking the First command button, concatenation of
two strings should be displayed in third text box and on clicking second command button,
reverse of string should display in third text box.

3. Write VB.Net Program to Design following form to store numbers in single dimensional
array and to find Maximum no & sum of all numbers in array.

46

Set C

1. Write a Vb.net program to design the following form, allow the user to select radio buttons
from Gender and Age Panel. After Selection appropriate CheckBox from Right Panel
should be selected automatically. Display appropriate message into the MessageBox by
clicking on Ok button.

2. Write VB.net program to design a calculator with proper validation.

47

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

48

Assignment 3

1. Write a Vb.net program to check whether entered number is Armstrong or.
2. Write a Vb.net program to accept a character from keyboard and check whether it is

vowel or not. Also display the case of that character.
3. Write a Vb.net program to accept number from user into the TextBox. Calculate the

square root of that number also convert the entered number into binary number and
display result into the Message Box

4. Write a Vb.net program to accept a number from an user through InputBox and display
its multiplication table into the ListBox.

5. Write a Vb.Net program to move the Text “Arts Commerce Science College”
continuously from Left to Right.

6. Write a VB.NET program to do the following operations on RichTextBox values
i) Font Style
ii) Font Color
iii) Save
iv) Open

7. Write a Vb.net program to design screen to accept the details from the user. Clicking on
Submit button Net Salary should be calculated and displayed into the TextBox. Display
the MessageBox informing the Name and Net Salary of employee.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

49

ASSIGNMENT - C: C#.NET

C# is a general-purpose, object-oriented, modern programming language, which is developed by
Microsoft and is a part of ".Net framework".

C# programming supports multi-paradigm, strong typing, lexically scope, imperative,
declarative, functional, etc.

Most of the syntaxes of the C# programming language are similar to the C and C++
programming languages.

we created a C# file called Program1.cs, and we used the following code to print "Hello World"
to the screen:

using System;

namespace HelloWorld
{

class Program1
{

static void Main(string[] args)
{

Console.WriteLine("Hello World!");
}

}
}

Hello World!

Example explained

Line 1: using System means that we can use classes from the System namespace.

Line 2: namespace is used to organize your code, and it is a container for classes and other
namespaces.

Line 3: The curly braces {} marks the beginning and the end of a block of code.

Line 4: class is a container for data and methods, which brings functionality to your program.
Every line of code that runs in C# must be inside a class. In our example, we named the class
Program1.

Line 6: The Main method. Any code inside its curly brackets {} will be executed. It is an entry
point method, Program execution is stared from main method.

50

Line 7: Console is a class of the System namespace, which has a WriteLine() method that is
used to output/print text. In our example it will output "Hello World!".

Note:

1.If you omit the using System line, you would have to write System.Console.WriteLine() to
print/output text.

2. Every C# statement ends with a semicolon (;)

3. C# is case-sensitive: "MyClass" and "myclass" has different meaning.

C# Comments: Comments are the statements ignored by the compiler.

Types of C# compiler:

1. Single-line Comments
Single-line comments start with two forward slashes (//).
Any text between // and the end of the line is ignored by C# compiler (will not be executed).
Example
// This is a comment
Console.WriteLine("Hello World!");

2. C# Multi-line Comments
Multi-line comments start with /* and ends with */.
Any text between /* and */ will be ignored by C# compiler.
Example
/* This is the multi line comment and
the output of this example is Hello World
on the screen. */
Console.WriteLine("Hello World!");

C# Variables
Variables are the identifier, used for the storing values.

Syntax:
datatype variableName = value;

Example:
string name = "Vikas";
Console.WriteLine(name);

Constants
Constant is a variable that can’t be change its value during the program once initialized.
Examlple : const doublePI = 3.142;

51

C# Data Types

Data Type tells us that which kind of value store into a variable and how many bytes allocated
for that variable.

Data Type Size Description
int 4 bytes Stores whole numbers from -2,147,483,648 to

2,147,483,647
long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808

to 9,223,372,036,854,775,807
float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7

decimal digits
Double 8 bytes Stores fractional numbers. Sufficient for storing 15

decimal digits
Bool 1 bit Stores true or false values
Char 2 bytes Stores a single character/letter, surrounded by single

quotes
String 2 bytes per

character
Stores a sequence

Note: A floating point number can also be a scientific number with an "e" to indicate the power
of 10:

float f1 = 35e3F;
double d1 = 12E4D;
Console.WriteLine(f1);
Console.WriteLine(d1);
Output
35000
120000

C# Type Casting

Type Casting is the converting the value of variable into one data type to another data type.

In C#, there are two types of casting:

 Implicit Casting (automatically) - converting a smaller type to a larger type size
char -> int -> long -> float -> double
Example:

int intNum = 10;
double doubleNum = intNum; // Automatic casting: int to double
Console.WriteLine(intNum); // Outputs 10

52

Console.WriteLine(doubleNum); // Outputs 10

 Explicit Casting (manually) - converting a larger type to a smaller size type
double -> float -> long -> int -> char

Example:

double doubleNum= 13.22;
int intNum= (int) doubleNum; // Manual casting: double to int
Console.WriteLine(doubleNum); // Outputs 13.22
Console.WriteLine(intNum); // Outputs 13

Type Conversion Methods

There are some built-in methods which converts data types explicitly, such
as Convert.ToBoolean, Convert.ToDouble, Convert.ToString, Convert.ToInt32 (int)
and Convert.ToInt64 (long):

int intNum = 10;
double doubleNum= 13.22;
bool boolNum = true;
Console.WriteLine(Convert.ToString(intNum)); // convert int to string
Console.WriteLine(Convert.ToDouble(intNum)); // convert int to double
Console.WriteLine(Convert.ToInt32(doubleNum)); // convert double to int
Console.WriteLine(Convert.ToString(boolNum)); // convert bool to string

Get User Input
Console.ReadLine() is the method that read the line of text from keyboard.
Example:
using System;

namespace MyApplication
{

class Program2
{

static void Main(string[] args)
{

Console.WriteLine("Enter your full name:");
string fullName = Console.ReadLine();
Console.WriteLine("Enter your age:");
int age = Console.ReadLine();

53

Console.WriteLine("Your Full Name is: " + fullName+” and Age is:”+age);

}
}

}

C# Operators

Operators are used to perform operations on variables and values.

Operator Name Example
Arithmetic Operators
+ Addition x + y
- Subtraction x - y
* Multiplication x * y
/ Division x / y
% Modulus x % y
++ Increment x++
-- Decrement x--
Comparison Operators
== Equal to x == y
!= Not equal x != y
> Greater than x > y
< Less than x < y
>= Greater than or equal to x >= y
<= Less than or equal to x <= y
Logical Operators

&& Logical and x < 5 && x < 10
|| Logical or x < 5 || x < 4
! Logical not !(x < 5 && x < 10)
Assignment Operator

= Assigning the RHS value to
LHS

x = 5

Short hand assignment
operator
+= x += 3 x = x + 3
-= x -= 3 x = x - 3
*= x *= 3 x = x * 3
/= x /= 3 x = x / 3
%= x %= 3 x = x % 3
&= x &= 3 x = x & 3
|= x |= 3 x = x | 3
^= x ^= 3 x = x ^ 3

54

>>= x >>= 3 x = x >> 3
<<= x <<= 3 x = x << 3

Control Structure:

There are three types of control structures in c# these are:
1. Decision Making Control Statements:
i. if Statement:When condition is true then statements within if block are executed.

Syntax:
if (condition)
{

// block of code to be executed if the condition is True
}

using System;

namespace MyApplication {
class Program3
{

static void Main(string[] args)
{

if (20>10)
{

Console.WriteLine("20 is greater than 10");
}

}
}

}

ii. if-else statement: if condition is true then statements within if block are executed
otherwise statements within else block are executed.
Syntax:
if (condition)
{

// block of code to be executed if the condition is True
}
else
{

// block of code to be executed if the condition is False
}

using System;

namespace MyApplication {
class Program4

55

{
static void Main(string[] args)
{

Console.Write("Enter number:");
int num = Convert.ToInt32(Console.ReadLine());

if (num>=0)
{

Console.WriteLine(num+" is +ve");
}

else
{

Console.WriteLine(num+" is -ve");
}

}
}

}

iii. Nested if statement:if with ladder or if within if are called nested if statement.
Syntax:
if (condition1)
{

// block of code to be executed if condition1 is True
}
else if (condition2)
{

// block of code to be executed if the condition1 is false and condition2 is True
}
else
{

// block of code to be executed if the condition1 is false and condition2 is False
}

using System;

namespace MyApplication
{

class Program5
{

static void Main(string[] args)
{

double per;
Console.Write("Enter the Percentage : ");

per = Convert.ToDouble(Console.ReadLine());
if (per >=75 10)
{

56

Console.WriteLine("First class with Distinction.");
}
else if (per >=60 && per<75)
{

Console.WriteLine("First Class.");
}

else if (per >=50 && per<60)
{

Console.WriteLine("Second Class.");
}

else if (per >=40 && per<50)
{

Console.WriteLine("Pass Class.");
}

else {
Console.WriteLine("Fail.");

}
}

}
}

iv. Switch-case statement:select one of many code blocks to be executed.
Syntax:
switch(expression)
{

case literal1: // code block
break;

case literal2:
// code block

break;
default:

// code block
}
using System;

namespace MyApplication
{
class Program6
{

static void Main(string[] args)
{
int monthNumber;
Console.Write("Enter Month Number (1 - 12): ");
monthNumber = Convert.ToInt32(Console.ReadLine());

57

switch (monthNumber)
{
case 1:
Console.WriteLine("January");
break;
case 2:
Console.WriteLine("February");
break;
case 3:
Console.WriteLine("March");
break;
case 4:
Console.WriteLine("April");
break;
case 5:
Console.WriteLine("May");
break;
case 6:
Console.WriteLine("June");
break;
case 7:
Console.WriteLine("July");
break;
case 8:
Console.WriteLine("August");
break;
case 9:
Console.WriteLine("September");
break;
case 10:
Console.WriteLine("October");
break;
case 11:
Console.WriteLine("November");
break;
case 12:
Console.WriteLine("December");
break;
default:
Console.WriteLine("you did not enter correct value for month name");
break;
}

}
}

58

}

2. Loop Control Structures :
Loops are the statements executed frequently until a specified condition becomes false.
i. While loop: it is an entry point loop it executed as long as a specified condition is

true.
Syntax:
while (condition) {

// code block to be executed
}
Example:Find the Sum of First N Numbers in C#

using System;

namespace MyApplication
{
class Program7

{
static void Main(string[] args)
{

int num, sum=0;

Console.Write("Enter a Number : ");
num = Convert.ToInt32(Console.ReadLine());

if(num <0)
{

Console.Write("Please Enter Positive Number");
}
else
{

while(num >0)
{

sum =sum+num;
num = num - 1;

}
}
Console.WriteLine("The sum is "+sum);

Console.ReadKey();
}

}
}

59

ii. do-while loop: it is an exit control loop it executed at least once even though
condition is false.
Syntax:
do
{

// code block to be executed
} while (condition);

Example: Find the Sum of Digits of a given number in C#
using System;

namespace MyApplication
{
class Program8

{
static void Main(string[] args)
{

int number, sum=0,lastDigit;

Console.Write("Enter a Number : ");
number = Convert.ToInt32(Console.ReadLine());

do
{

lastDigit=number%10;
sum = sum+ lastDigit;
number =number/10;

}while(number>0);

Console.WriteLine("The sum is "+sum);

Console.ReadKey();
}

}
}

iii. for loop: When we know the number of iterations in advance then for loop is
used instead of while loop.
Syntax:
for (Initialization ; Condition ; Updation)
{

// code block to be executed
}

Example: C# Program to Find the Factorial of a Number
using System;

60

namespace MyApplication
{
class Program9

{
static void Main(string[] args)

{
int i, number, fact;
Console.WriteLine("Enter the Number");
number = int.Parse(Console.ReadLine());
fact = number;
for (i = 1; i <= number; i++)
{

fact = fact * i;
}
Console.WriteLine("\nFactorial of Given Number is: "+fact);
Console.ReadLine();

}
}

}

3. Jump Control Structures: Transfer the control of flow unorderly.
i. break statement: it is use for abnormal termination of loop; it means break transfer

the control out of loop.

using System;

namespace MyApplication
{

class Program10
{

static void Main(string[] args)
{

for (int i = 0; i < 10; i++)
{

if (i == 4)
{

break;
}
Console.WriteLine(i);

}
}

}
}
Output

61

0
1
2
3

ii. continue statement: it is use for breaks one iteration in the loop, if a specified
condition occurs, and continues with the next iteration in the loop.

using System;

namespace MyApplication
{

class Program11
{

static void Main(string[] args)
{

for (int i = 0; i < 10; i++)
{

if (i == 4)
{

continue;
}
Console.WriteLine(i);

}
}

}
}
Output
0
1
2
3
5
6
7
8
9

Array
Array is use to storing the heterogeneous elements into single variable.
Array element is accessed using an index, it starts from 0 to size-1.

Syntax:
Datatype[] array_name=new Datatype[size];

Example:program to find min and max in an array.
using System;

62

namespace MyApplication
{

class Program12
{

static void Main(string[] args)
{

int[] numbers = new int[10];
Random rnd = new Random();
int min, max;

for (int i = 0; i < numbers.Length; i++)
{

numbers[i] = rnd.Next(1, 100);
Console.WriteLine(numbers[i]);

}
min = numbers[0];
max = numbers[0];
for (int i = 1; i < numbers.Length; i++)
{

if (min > numbers[i])
min = numbers[i];

if (max < numbers[i])
max = numbers[i];

}
Console.WriteLine("=====================================");
Console.WriteLine("The highest number in the array: " + max);
Console.WriteLine("The lowest number in the array:" + min);
Console.ReadKey();

}
}

}

Output
56
95
23
75
63
45
19
7
32
83
The highest number in the array:95
The lowest number in the array:7

63

Method: It is a block of statements used to perform a specific task and it may return value to the
calling program.
Syntax to define method:
static return_type method_name([parameter_list])
{

//method statements
}
Note: [] indicates it is optional.

Example: Check whether given number is even or odd using method
using System;

namespace MyApplication
{
class Program13

{
static bool IsEvenNumber(int num)
{

if (num % 2 == 0)
{

return true;
}
else
{

return false;
}

}
static void Main(string[] args)
{

int n;
Console.Write("Enter an integer : ");
n = Int32.Parse(Console.ReadLine());

if (IsEvenNumber(n))
{

Console.WriteLine("{0} is even", n);
}
else
{

Console.WriteLine("{0} is odd", n);
}

Console.ReadKey();
}

}

64

}
Output
Enter an integer: 37
37 is odd

String class:

In C#, string is keyword which is an alias for System.String class. That is why string and String
are equivalent. We are free to use any naming convention.

string s1 = "india";//creating string using string keyword

String s2 = "Bharat";//creating string using String class

String methods

Method Name Description
Clone() It is used to return a reference to this instance of String.
Compare(String, String) It is used to compares two specified String objects. It returns an

integer that indicates their relative position in the sort order.
CompareOrdinal(String,
String)

It is used to compare two specified String objects by evaluating the
numeric values of the corresponding Char objects in each string..

CompareTo(String) It is used to compare this instance with a specified String object. It
indicates whether this instance precedes, follows, or appears in the
same position in the sort order as the specified string.

Concat(String, String) It is used to concatenate two specified instances of String.
Contains(String) It is used to return a value indicating whether a specified substring

occurs within this string.
Copy(String) It is used to create a new instance of String with the same value as a

specified String.
CopyTo(Int32, Char[], Int32,
Int32)

It is used to copy a specified number of characters from a specified
position in this instance to a specified position in an array of Unicode
characters.

EndsWith(String) It is used to check that the end of this string instance matches the
specified string.

Equals(String, String) It is used to determine that two specified String objects have the
same value.

Format(String, Object) It is used to replace one or more format items in a specified string
with the string representation of a specified object.

GetEnumerator() It is used to retrieve an object that can iterate through the individual
characters in this string.

GetHashCode() It returns the hash code for this string.
GetType() It is used to get the Type of the current instance.
GetTypeCode() It is used to return the TypeCode for class String.

65

IndexOf(String) It is used to report the zero-based index of the first occurrence of the
specified string in this instance.

Insert(Int32, String) It is used to return a new string in which a specified string is inserted
at a specified index position.

Intern(String) It is used to retrieve the system's reference to the specified String.
IsInterned(String) It is used to retrieve a reference to a specified String.
IsNormalized() It is used to indicate that this string is in Unicode normalization form

C.
IsNullOrEmpty(String) It is used to indicate that the specified string is null or an Empty

string.
IsNullOrWhiteSpace(String) It is used to indicate whether a specified string is null, empty, or

consists only of white-space characters.
Join(String, String[]) It is used to concatenate all the elements of a string array, using the

specified separator between each element.
LastIndexOf(Char) It is used to report the zero-based index position of the last

occurrence of a specified character within String.
LastIndexOfAny(Char[]) It is used to report the zero-based index position of the last

occurrence in this instance of one or more characters specified in a
Unicode array.

Normalize() It is used to return a new string whose textual value is the same as
this string, but whose binary representation is in Unicode
normalization form C.

PadLeft(Int32) It is used to return a new string that right-aligns the characters in this
instance by padding them with spaces on the left.

PadRight(Int32) It is used to return a new string that left-aligns the characters in this
string by padding them with spaces on the right.

Remove(Int32) It is used to return a new string in which all the characters in the
current instance, beginning at a specified position and continuing
through the last position, have been deleted.

Replace(String, String) It is used to return a new string in which all occurrences of a
specified string in the current instance are replaced with another
specified string.

Split(Char[]) It is used to split a string into substrings that are based on the
characters in an array.

StartsWith(String) It is used to check whether the beginning of this string instance
matches the specified string.

Substring(Int32) It is used to retrieve a substring from this instance. The substring
starts at a specified character position and continues to the end of the
string.

ToCharArray() It is used to copy the characters in this instance to a Unicode
character array.

ToLower() It is used to convert String into lowercase.
ToLowerInvariant() It is used to return convert String into lowercase using the casing

rules of the invariant culture.

66

ToString() It is used to return instance of String.
ToUpper() It is used to convert String into uppercase.
Trim() It is used to remove all leading and trailing white-space characters

from the current String object.
TrimEnd(Char[]) It Is used to remove all trailing occurrences of a set of characters

specified in an array from the current String object.
TrimStart(Char[]) It is used to remove all leading occurrences of a set of characters

specified in an array from the current String object.

Example:

using System.Text;
namespace MyApplication
{

class Program13
{

static void Main(string[] args)
{

string firstname;
string lastname;

firstname = "Steven Clark";
lastname = "Clark";

Console.WriteLine(firstname.Clone());
// Make String Clone

Console.WriteLine(firstname.CompareTo(lastname));
//Compare two string value and returns 0 for true and1 for false

Console.WriteLine(firstname.Contains("ven")); //Check whether specified value exists or not
in string

Console.WriteLine(firstname.EndsWith("n")); //Check whether specified value is the last
character of string

Console.WriteLine(firstname.Equals(lastname));
//Compare two string and returns true and false

Console.WriteLine(firstname.GetHashCode());
//Returns HashCode of String

Console.WriteLine(firstname.GetType());
//Returns type of string

67

Console.WriteLine(firstname.GetTypeCode());
//Returns type of string

Console.WriteLine(firstname.IndexOf("e")); //Returns the first index position of specified
value
the first index position of specified value

Console.WriteLine(firstname.ToLower());
//Covert string into lower case

Console.WriteLine(firstname.ToUpper());
//Convert string into Upper case

Console.WriteLine(firstname.Insert(0, "Hello")); //Insert substring into string

Console.WriteLine(firstname.IsNormalized());
//Check Whether string is in Unicode normalization
from C

Console.WriteLine(firstname.LastIndexOf("e")); //Returns the last index position of
specified value

Console.WriteLine(firstname.Length);
//Returns the Length of String

Console.WriteLine(firstname.Remove(5));
//Deletes all the characters from begining to specified index.

Console.WriteLine(firstname.Replace('e','i')); // Replace the character

string[] split = firstname.Split(new char[] { 'e' }); //Split the string based on specified value

Console.WriteLine(split[0]);
Console.WriteLine(split[1]);
Console.WriteLine(split[2]);

Console.WriteLine(firstname.StartsWith("S"));
//Check wheter first character of string is same as specified value

Console.WriteLine(firstname.Substring(2,5));
//Returns substring

Console.WriteLine(firstname.ToCharArray());
//Converts an string into char array.

68

Console.WriteLine(firstname.Trim());
//It removes starting and ending white spaces fromstring.

}
}

}
Output
Steven Clark
1
True
False
False
1470518261
System.String
String
2
steven clark
STEVEN CLARK
HelloSteven Clark
True
4
12
Steve
Stivin Clark
St
v
n Clark
True
even
Steven Clark
Steven Clark

Object Oriented Concepts
Object-oriented programming has several advantages over procedural programming:

 OOP is faster and easier to execute
 OOP provides a clear structure for the programs
 OOP helps to keep the C# code DRY "Don't Repeat Yourself", and makes the code easier

to maintain, modify and debug
 OOP makes it possible to create full reusable applications with less code and shorter

development time.

Object and Classes:
In C#, Object is a real world entity, for example, chair, car, pen, mobile, laptop etc.
Student s1 = new Student();//creating an object of Student

69

It is a template from which objects are created. It can have fields, methods, constructors
etc.

Example:
using System;

public class Student
{

public int id;
public String name;
public void insert(int i, String n)
{

id = i;
name = n;

}
public void display()
{

Console.WriteLine(id + " " + name);
}

}
class TestStudent{

public static void Main(string[] args)
{

Student s1 = new Student();
Student s2 = new Student();
s1.insert(1001, "Abhijeet");
s2.insert(1002, "Reshma");
s1.display();
s2.display();

}
}

Output
1001 Abhijeet
1002 Reshma

Access Modifiers / Specifiers
Access modifiers or specifiers are the keywords that are used to specify accessibility or scope of
variables and functions in the C# application.
C# provides five types of access specifiers.

Access
Specifier

Description

Public It specifies that access is not restricted.
Protected It specifies that access is limited to the containing class or in derived

70

class.
Internal It specifies that access is limited to the current assembly.
protected
internal

It specifies that access is limited to the current assembly or types derived
from the containing class.

Private It specifies that access is limited to the containing type.

Constructors

In C#, constructor is a special method its name should be same as its class name.
which is invoked automatically at the time of object creation.
It is used to initialize the data members of new object generally.
It does not have any return type even though void.

There can be two types of constructors in C#.
1. Default constructor: constructor does not have any parameters or arguments.
2. Parameterized constructor: constructor have at least one parameter.

using System;
public class Employee
{

public int id;
public String name;
public float salary;

1. public Employee()

2. {
id = 101;

name = “Rahul Bhosale”;
salary = 750000f;

3.

4. Console.WriteLine("Default Constructor Invoked");

5. }

public Employee(int i, String n,float s)
{

id = i;
name = n;
salary = s;

Console.WriteLine("Parameterised Constructor Invoked");
}
public void display()
{

Console.WriteLine(id + " " + name+" "+salary);
}

71

}
class TestEmployee{

public static void Main(string[] args)
{

Employee e1 = new Employee();
Employee e2 = new Employee(102, "Mahesh Raut", 460000f);
e1.display();
e2.display();

}
}

Output
101Rahul Bhosale 750000
102Mahesh Raut 460000

Inheritance
In C#, inheritance is a process in which object of one class acquires the properties of object of
another class.
Inheritance provides reusability of code and extends or modifies the attributes, behaviors which
is defined in other class.
The class whose members are inherited is called base class or parent class or super class and the
class which inherits the members of another class is called derived class or child class or sub
class.
Types of inheritance:

1. Single Inheritance
2. Multilevel Inheritance
3. Hierarchical Inheritance

Example of Multilevel Inheritance:
using System;

public class Animal
{

public void eat() { Console.WriteLine("Eating..."); }
}
public class Dog: Animal
{

public void bark() { Console.WriteLine("Barking..."); }
}
public class BabyDog : Dog
{

public void weep() { Console.WriteLine("Weeping..."); }
}
class TestInheritance{

public static void Main(string[] args)
{

72

BabyDog d1 = new BabyDog();
d1.eat();
d1.bark();
d1.weep();

}
}

Output
Eating...
Barking...
Weeping...

Abstract Classes and Methods

The abstract keyword is used for classes and methods:
Abstract class: It can have abstract and non-abstract methods. It cannot be instantiated.

Its implementation must be provided by derived classes. Here, derived class is forced to provide
the implementation of all the abstract methods.

Abstract method: A method which is declared abstract and has no body is called
abstract method. It can be declared inside the abstract class only. Its implementation must be
provided by derived classes.

Example:
using System;
public abstract class Shape
{

public abstract void draw();
}
public class Rectangle : Shape
{

public override void draw()
{

Console.WriteLine("drawing rectangle...");
}

}
public class Circle : Shape
{

public override void draw()
{

Console.WriteLine("drawing circle...");
}

}
public class TestAbstract
{

73

public static void Main()
{

Shape s;
s = new Rectangle();
s.draw();
s = new Circle();
s.draw();

}
}

Output
drawing ractangle...
drawing circle..

Interface

It is used to achieve multiple inheritance which can't be achieved by class

An interface is a completely "abstract class", which can only contain abstract methods (with
empty bodies)

Example:

using System;
public interface Drawable
{

void draw();
}
public class Rectangle : Drawable
{

public void draw()
{

Console.WriteLine("drawing rectangle...");
}

}
public class Circle : Drawable
{

public void draw()
{

Console.WriteLine("drawing circle...");
}

}
public class TestInterface
{

public static void Main()
{

Drawable d;

74

d = new Rectangle();
d.draw();
d = new Circle();
d.draw();

}
}

Output
drawing ractangle...
drawing circle...

Method Overloading

Method having same name but different prototyping or signature called as method overloading.

The advantage of method overloading is that it increases the readability of the program because
you don't need to use different names for same action.

Example

using System;
public class Calculate{

public static int sum(int a,int b){
return a + b;

}
public static int sum(int a, int b, int c)
{

return a + b + c;
}

}
public class TestMemberOverloading
{

public static void Main()
{

Console.WriteLine(Calculate.sum(10, 20));
Console.WriteLine(Calculate.sum(10, 20, 30));

}
}
Output
30
60

Method Overriding

If derived class defines same method as defined in its base class, it is known as method
overriding.
It is used to achieve runtime polymorphism.

75

To perform method overriding, you need to use virtual keyword with base class method
and override keyword with derived class method.
Example:
using System;
public class Animal{

public virtual void eat(){
Console.WriteLine("Eating...");

}
}
public class Dog: Animal
{

public override void eat()
{

Console.WriteLine("Eating bread...");
}

}
public class TestOverriding
{

public static void Main()
{

Dog d = new Dog();
d.eat();

}
}
Output
Eating bread...

Delegates

In C#, Delegate is a reference to the method. It works like function pointer in C and C++. But it
is objected-oriented, secured and type-safe than function pointer.
For static method, delegate encapsulates method only. But for instance method, it encapsulates
method and instance both.
The best use of delegate is to use as event.
Internally a delegate declaration defines a class which is the derived class of System.Delegate.

Example:

using System;
delegate int Calculator(int n);//declaring delegate
public class DelegateExample
{

static int num = 100;
public static int addition(int n)
{

num = num + n;

76

return num ;
}
public static int multiplication(int n)
{

num = num * n;
return num;

}
public static int getNumber()
{

return num;
}
public static void Main(string[] args)
{

Calculator c1 = new Calculator(addition);//instantiating delegate
Calculator c2 = new Calculator(multiplication);
c1(20);//calling method using delegate
Console.WriteLine("After c1 delegate, Number is: " + getNumber());
c2(3);
Console.WriteLine("After c2 delegate, Number is: " + getNumber());

}
}

Output
After c1 delegate, Number is: 120
After c2 delegate, Number is: 360

77

Assignment 4

Set A:

1. Program to display the addition, subtraction, multiplication and division of two number.

2. Program to display the first 10 natural numbers and their sum.

3. Accept three and find their maximum and minimum.

4. C# Program to Calculate the Power of a Number Without Using Math.Pow.

5. Define a Student class (roll number, name, and percentage). Define a default
andparameterized constructor. Override the toString method. Keep a count objects
created. Create objects using parameterized constructor and display the object count after
each object is created. (Use static member and method).

6. Define a class Employee having members – id, name, department, salary. Define default
and parameterized constructors. Create a subclass called “Manager” with member bonus.
Define methods accept and display in both the classes. Create no. objects of the Manager
class and display the details of the manager having the maximum total salary (salary +
bonus)

7. Define an interface “IntOperations” with methods to check whether an integer ispositive,
negative, even, odd, prime and operations like factorial and sum of digits. Define a class
MyNumber having one private int data member. Write a default constructor toinitialize it
to 0 and another constructor to initialize it to a value (Use this). Implement theabove
interface. Create an object in main.

Set B:

1. Define an interface “StackOperations” which declares methods for a static stack.
Define a class “MyStack” which contains an array and top as data members and
implements the above interface. Initialize the stack using a constructor. Write a menu
driven program to perform operations on a stack object.

2. Define a class CricketPlayer (name, no_of_innings, no_times_notout,
total_runs,bat_avg). Create an array of n player objects. Calculate the batting average
for each Player using a static method avg(). Define a static method “sortPlayer”
which sorts the array on the basis of average. Display the player details in sorted
order.

78

3. Create a class date with day, month and year as members. Write appropriate member
functions. Create another class student, which has id, name, date of birth and marks of
3 subjects as members. Write appropriate constructor for the student which assigns
values to the members. Accept the details from keyboard and create a student object
using the arguments. Display the student details in a proper format.

Set C:

1. Define a class “Employee” which has members id, name, date of birth. Define
another class “Manager” which has members department name and joining date
and extends Employee. Create n objects of the manager class.

2. Define an abstract class “Staff” with members name and address. Define two
subclasses of this class – “FullTimeStaff” (department, salary) and
“PartTimeStaff” (numberof_hours, rate_per_hour). Define appropriate
constructors. Create n objects which could be of either FullTimeStaff or
PartTimeStaff class by asking the user’s choice. Display details of all
“FullTimeStaff” objects and all “PartTimeStaff” objects.

3. Create an interface “CreditCardInterface” with methods to
viewCreditAmount,viewPin, changePin, useCard and payBalance. Create a class
Customer (name, cardnumber, pin, creditAmount – initialized to 0). Implement
methods viewCreditAmount,viewPin, changePin and payBalance of the interface.
From Customer,create classesRegularCardHolder (maxCreditLimit) and
GoldCardHolder (String specialPrivileges)and define the remaining methods of
the interface. Create n objects of the RegularCardHolder and GoldCardHolder
classes and writea menu driven program to perform the following actions

1. Use Card
2. Pay Balance
3. Change Pin

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

79

ASSIGNMENT -D: ASP.NET

ASP.NET is a web development platform, which provides a programming model, a
comprehensive software infrastructure and various services required to build up robust web
applications for PC as well as mobile devices. ASP.NET works on top of the HTTP protocol, and
uses the HTTP commands and policies to set a browser-to-server bilateral communication and
cooperation. ASP.NET is a part of Microsoft .Net platform. ASP.NET applications are compiled
codes, written using the extensible and reusable components or objects present in .Net
framework. These codes can use the entire hierarchy of classes in .Net framework.

ASP.NET application codes can be written in any of the following languages:

 C#
 Visual Basic.Net
 Jscript
 J#

ASP.NET is used to produce interactive, data-driven web applications over the internet. It
consists of a large number of controls such as text boxes, buttons, and labels for assembling,
configuring, and manipulating code to create HTML pages.

The architecture of the.Net framework is based on the following key components

1. Language – A variety of languages exists for .net framework. They are VB.net and C#.
These can be used to develop web applications.

2. Library – The .NET Framework includes a set of standard class libraries. The most
common library used for web applications in .net is the Web library. The web library has
all the necessary components used to develop.Net web-based applications.

3. Common Language Runtime – The Common Language Infrastructure or CLI is a
platform. .Net programs are executed on this platform. The CLR is used for performing
key activities. Activities include Exception handling and Garbage collection.

ASP.Net Page Lifecycle

When an ASP.Net page is called, it goes through a particular lifecycle. This is done before
the response is sent to the user. There are series of steps which are followed for the
processing of an ASP.Net page.

The various stages of the lifecycle of an ASP.Net web page are as:

1. Page Request– This is when the page is first requested from the server. When the page is
requested, the server checks if it is requested for the first time. If so, then it needs to
compile the page, parse the response and send it across to the user. If it is not the first
time the page is requested, the cache is checked to see if the page output exists. If so, that
response is sent to the user.

80

2. Page Start – During this time, 2 objects, known as the Request and Response object are
created. The Request object is used to hold all the information which was sent when the
page was requested. The Response object is used to hold the information which is sent
back to the user.

3. Page Initialization – During this time, all the controls on a web page is initialized. So if
you have any label, textbox or any other controls on the web form, they are all initialized.

4. Page Load – This is when the page is actually loaded with all the default values. So if a
textbox is supposed to have a default value, that value is loaded during the page load
time.

5. Validation – Sometimes there can be some validation set on the form. For example, there
can be a validation which says that a list box should have a certain set of values. If the
condition is false, then there should be an error in loading the page.

6. Postback event handling – This event is triggered if the same page is being loaded
again. This happens in response to an earlier event. Sometimes there can be a situation
that a user clicks on a submit button on the page. In this case, the same page is displayed
again. In such a case, the Postback event handler is called.

7. Page Rendering – This happens just before all the response information is sent to the
user. All the information on the form is saved, and the result is sent to the user as a
complete web page.

8. Unload – Once the page output is sent to the user, there is no need to keep the ASP.net
web form objects in memory. So the unloading process involves removing all unwanted
objects from memory.

Working with Views and Windows

You can work with windows in the following ways:

 To change the Web Forms Designer from one view to another, click on the Design or
source button.

 To close a window, click on the close button on the upper right corner and to redisplay,
select it from the View menu.

 To hide a window, click on its Auto Hide button. The window then changes into a tab.
 To display again, click the Auto Hide button again.
 To change the size of a window, just drag it.

Adding Folders and Files to your Website

When a new web form is created, Visual Studio automatically generates the starting HTML for
the form and displays it in Source view of the web forms designer. The Solution Explorer is used
to add any other files, folders or any existing item on the web site.

 To add a standard folder, right-click on the project or folder under which you are going to
add the folder in the Solution Explorer and choose New Folder.

 To add an ASP.NET folder, right-click on the project in the Solution Explorer and select
the folder from the list.

 To add an existing item to the site, right-click on the project or folder under which you
are going to add the item in the Solution Explorer and select from the dialog box.

81

Projects and Solutions

A typical ASP.NET application consists of many items: the web content files (.aspx), source
files (.cs files), assemblies (.dll and .exe files), data source files (.mdb files), references,
icons, user controls and miscellaneous other files and folders. All these files that make up the
website are contained in a Solution.

When a new website is created, dotnet environment automatically creates the solution and
displays it in the solution explorer.

Solutions may contain one or more projects. A project contains content files, source files, and
other files like data sources and image files. Generally, the contents of a project are compiled
into an assembly as an executable file (.exe) or a dynamic link library (.dll) file.

Typically a project contains the following content files:

 Page file (.aspx)
 User control (.ascx)
 Web service (.asmx)
 Master page (.master)
 Site map (.sitemap)
 Website configuration file (.config)

Building and Running a Project:

You can execute an application by:

 Selecting Start
 Selecting Start Without Debugging from the Debug menu
 pressing F5
 Ctrl-F5

The program is built meaning, the .exe or the .dll files are generated by selecting a command
from the Build menu.

ASP.NET Application Life Cycle

The application life cycle has the following stages:

1. User makes a request for accessing application resource, a page. Browser sends this request to
the web server.

2. A unified pipeline receives the first request and the following events take place:

i. An object of the class ApplicationManager is created.

ii. An object of the class HostingEnvironment is created to provide information regarding
the resources. iii. Top level items in the application are compiled.

82

3. Response objects are created. The application objects such as HttpContext, HttpRequest and
HttpResponse are created and initialized.

4. An instance of the HttpApplication object is created and assigned to the request.

5. The request is processed by the HttpApplication class. Different events are raised by this class
for processing the request.

ASP.NET Page Life Cycle

The page life cycle phases are:

 Initialization
 Instantiation of the controls on the page
 Restoration and maintenance of the state
 Execution of the event handler codes
 Page rendering

EVENT HANDLING

An event is an action or occurrence such as a mouse click, a key press, mouse movements, or
any system-generated notification. A process communicates through events. For example,
interrupts are system-generated events. When events occur, the application should be able to
respond to it and manage it.

Events in ASP.NET are raised at the client machine and handled at the server machine. For
example, a user clicks a button displayed in the browser. A Click event is raised. The browser
handles this client-side event by posting it to the server.

Event Arguments

ASP.NET event handlers generally take two parameters and return void. The first parameter
represents the object raising the event and the second parameter is event argument. The general
syntax of an event is:

private void EventName (object sender, EventArgs e);

Application and Session Events

The most important application events are:

 Application_Start - It is raised when the application/website is started
 Application_End - It is raised when the application/website is stopped. Similarly, the

most used Session events are
 Session_Start - It is raised when a user first requests a page from the application.
 Session_End - It is raised when the session ends.

83

Page and Control Events

Common page and control events are:

 DataBinding – It is raised when a control binds to a data source.
 Disposed – It is raised when the page or the control is released.
 Error - It is a page event, occurs when an unhandled exception is thrown.
 Init – It is raised when the page or the control is initialized.
 Load – It is raised when the page or a control is loaded.
 PreRender – It is raised when the page or the control is to be rendered.
 Unload – It is raised when the page or control is unloaded from memory.

Event Handling Using Controls:

All ASP.NET controls are implemented as classes, and they have events which are fired when a
user performs a certain action on them. For example, when a user clicks a button the 'Click' event
is generated. For handling events, there are in-built attributes and event handlers. Event handler
is coded to respond to an event and take appropriate action on it.

The event handler for the Click event:

Protected Sub btnCancel_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles btnCancel.Click

End Sub

Example: Write a Program to calculate factorial of number

Partial Class _Default
Inherits System.Web.UI.Page
Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Button1.Click
Dim i As Integer
Dim a As Double
Dim f As Double
f = 1
i = 1
a = TextBox1.Text
While i <= a
f = f * i
i = i + 1
End While
Label3.Text = f & "unit"
End Sub
End Class

84

Write a Program to bind data using template in data list

Imports System.Data.SqlClient
Partial Class _Default
Inherits System.Web.UI.Page
Dim constr As String =
ConfigurationManager.ConnectionStrings("DatabaseConnectionString1").Connection String
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles
Me.Load
Dim conpubs As SqlConnection Dim cmdselect As SqlCommand Dim dtrAuthor As
SqlDataReader
conpubs = New SqlConnection(constr)
cmdselect = New SqlCommand("Select * from Author", conpubs) conpubs.Open()
dtrAuthor = cmdselect.ExecuteReader() dtrlstAuthor.DataSource = dtrAuthor
dtrlstAuthor.DataBind() dtrAuthor.Close()
conpubs.Close()
End Sub
End Class

Assignment 5

1. Write a Program to convert temperature from Fahrenheit to Celsius or vice versa.
2. Write a Program to display the selected date in the calendar
3. Write a Program to display the Difference between the two dates in the calendar.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

85

ASSIGNMENT -E: ADO .NET

A data-access technology that enables applications to connect to data stores and manipulate data
contained in them in various ways.

An object oriented framework that allows you to interact with database systems

ADO.NET components

 1) Dataset

 2) Data Provider

 DataSet is an in-memory representation of data. It is a disconnected, cached set of
records that are retrieved from a database.

 When a connection is established with the database, the data adapter creates a dataset and
stores data in it. After the data is retrieved and stored in a dataset, the connection with the
database is closed. This is called the 'disconnected architecture'. The dataset works as a
virtual database containing tables, rows, and columns.

85

ASSIGNMENT -E: ADO .NET

A data-access technology that enables applications to connect to data stores and manipulate data
contained in them in various ways.

An object oriented framework that allows you to interact with database systems

ADO.NET components

 1) Dataset

 2) Data Provider

 DataSet is an in-memory representation of data. It is a disconnected, cached set of
records that are retrieved from a database.

 When a connection is established with the database, the data adapter creates a dataset and
stores data in it. After the data is retrieved and stored in a dataset, the connection with the
database is closed. This is called the 'disconnected architecture'. The dataset works as a
virtual database containing tables, rows, and columns.

85

ASSIGNMENT -E: ADO .NET

A data-access technology that enables applications to connect to data stores and manipulate data
contained in them in various ways.

An object oriented framework that allows you to interact with database systems

ADO.NET components

 1) Dataset

 2) Data Provider

 DataSet is an in-memory representation of data. It is a disconnected, cached set of
records that are retrieved from a database.

 When a connection is established with the database, the data adapter creates a dataset and
stores data in it. After the data is retrieved and stored in a dataset, the connection with the
database is closed. This is called the 'disconnected architecture'. The dataset works as a
virtual database containing tables, rows, and columns.

86

Connecting to a Database

 The .Net Framework provides two types of Connection classes −

 SqlConnection − designed for connecting to Microsoft SQL Server.

 OleDbConnection − designed for connecting to a wide range of databases, like
Microsoft Access and Oracle.

Steps :
 We have a table stored in Microsoft SQL Server, named Customers, in a database

named testDB.
 Select TOOLS → Connect to Database
 Select a server name and the database name in the Add Connection dialog box.
 Click on the Test Connection button to check if the connection succeeded.
 Add a DataGridView on the form.
 Click on the Choose Data Source combo box. Click on the Add Project Data

Source link.
 This opens the Data Source Configuration Wizard.

Select Database as the data source type
 Choose DataSet as the database model.
 Choose the connection already set up.
 Save the connection string.
 Choose the database object, Customers table in our example, and click the Finish

button.
 When the application is run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window

2) Data Provider:

A data provider is used for connecting to a database, executing commands and retrieving data,
storing it in a dataset, reading the retrieved data and updating the database.

The data provider in ADO.Net consists of the following four objects –

1) Connection

This component is used to set up a connection with a data source.

2) Command

A command is a SQL statement or a stored procedure used to retrieve, insert, delete or modify
data in a data source.

87

3)DataReader

Data reader is used to retrieve data from a data source in a read-only and forward-only
mode.

4) DataAdapter

This is integral to the working of ADO.Net since data is transferred to and from a database
through a data adapter. It retrieves data from a database into a dataset and updates the database.
When changes are made to the dataset, the changes in the database are actually done by the data
adapter.

There are following different types of data providers included in ADO.Net

1) The .Net Framework data provider for SQL Server - provides access to Microsoft SQL
Server.

2) The .Net Framework data provider for OLE DB - provides access to data sources exposed by
using OLE DB.

3) The .Net Framework data provider for ODBC - provides access to data sources exposed by
ODBC.

4) The .Net Framework data provider for Oracle - provides access to Oracle data source.

5) The Entity Client provider - enables accessing data through Entity Data Model (EDM)
applications.

CONNECTIONS:

ADO.NET provids both Sqlconnection and OLEDB connection classes for use with
datasource.

1) Sql Connection :-

To declare and instantiate Sql connection,u can use foll.stmt

Dim con AS Sqlconnection

con = New SqlConnection("server=YASH;database=test;integrated security=true")

2) OleDbConnection

Dim con As OleDbConnection

Dim con As OleDbConnection

88

con = New OleDbconnection ("Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=yourdatabasename.mdb”)

Command

We use command object to tell database about operation we need to perform.

The typical command on database will be :-

1) Select

2) Insert

3) Delete

4) Update

EXAMPLE:creating OLEDB Data connection

imports System.Data.OleDb

Public Class Form1

Dim cn As New OleDbConnection

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

cn = New OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\Users\user\Documents\Database5.accdb")

cn.Open()

MsgBox("oledb connection is successfully established")

End Sub

End Class

Data Adapter

 DataAdapter is a part of the ADO.NET Data Provider. DataAdapter provides the
communication between the Dataset and the Datasource. We can use the DataAdapter in
combination with the DataSet Object. That is these two objects combine to enable both
data access and data manipulation capabilities.

89

 The DataAdapter can perform Select , Insert , Update and Delete SQL operations in the
Data Source. The Insert , Update and Delete SQL operations , we are using the
continuation of the Select command perform by the DataAdapter. That is the
DataAdapter uses the Select statements to fill a DataSet and use the other three SQL
commands (Insert, Update, delete) to transmit changes back to the Database

 Types of DataAdapter

1) SqlDataAdapter

2) OleDbDataAdapter

Types of DataAdapter

1) SqlDataAdapter :-

Dim ad as SqlDataAdapter

ad=new SqlDataAdapter (cmd)

2) OleDbDataAdapter :-

Dim ad as OleDbDataAdapter

ad=new OleDbDataAdapter (cmd)

Example

Imports System.Data.OleDb

Public Class Form1

Dim cn As New OleDbConnection

Dim cmd As New OleDbCommand

Dim ad As New OleDbDataAdapter

Dim dt As New DataTable

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

'TODO: This line of code loads data into the 'Database5DataSet.doctor' table. You can
move, or remove it, as needed.

Me.DoctorTableAdapter.Fill(Me.Database5DataSet.doctor)

90

cn = New OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\Users\user\Documents\Database5.accdb")

cn.Open()

MsgBox("oledb connection is successfully established")

cmd = New OleDbCommand("select * from doctor", cn)

ad = New OleDbDataAdapter(cmd)

ad.Fill(dt)

DataGridView1.DataSource = dt

End Sub

End Class

Dataset

 The DataSet contains the copy of the data we requested through the SQL statement. We
can use Dataset in combination with SqlDataAdapter class . The SqlDataAdapter object
allows us to populate Data Tables in a DataSet.

Example

Imports System.Data.OleDb

Public Class Form1

Dim cn As New OleDbConnection

Dim cmd As New OleDbCommand

Dim ad As New OleDbDataAdapter

Dim ds As New DataSet()

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

Me.DoctorTableAdapter.Fill(Me.Database5DataSet.doctor)

cn = New OleDbConnection("Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\Users\user\Documents\Database5.accdb")

91

cn.Open()

MsgBox("oledb connection is successfully established")

adp = New OleDbDataAdapter(cmd)

adp = New OleDbDataAdapter("select * from doctor", cn)

ad.Fill(ds, "doctor")

DataGridView1.DataSource = ds

DataGridView1.DataMember = "doctor"

End Sub

End Class

Data Reader

 To retrieve data using a DataReader, create an instance of the Command object, and then
create a DataReader bycalling Command.ExecuteReader to retrieve rows from a data
source.

 DataReader Object in ADO.NET is a stream-based , forward-only, read-only retrieval of
query results from the Data Source, which do not update the data. The DataReader cannot
be created directly from code, they created only by calling the Execute Reader method of
a Command Object.

DataReader = Command.ExecuteReader()

DataTable

 DataTable represents relational data into tabular form. ADO.NET provides a DataTable
class to create and use data table independently. It can also be used with DataSet also.
Initially, when we create DataTable, it does not have table schema. We can create table
schema by adding columns and constraints to the table. After defining table schema, we
can add rows to the table.

 We must include System.Data namespace before creating DataTable.

Example

Imports System.Data. DataTable

Public Class Form1

Dim table As New DataTable("table")

92

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

table.Columns.Add("ID", Type.GetType("System.Int32"))

table.Columns.Add("FIRST NAME", Type.GetType("System.Int32"))

table.Columns.Add("LAST NAME", Type.GetType("System.Int32"))

table.Columns.Add("SUM", Type.GetType("System.Int32"))

DataGridView1.DataSource = table

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

DataGridView1.DataSource = table

End Sub

Data Validation

 Data validation is the process of ensuring, at least as far as is possible, that the data given
to a program by a user or from a file is of the correct type, and in the correct format.

 Although the programmer will obviously take every precaution to ensure the correct
operation of the program, and will attempt to eliminate bugs that could cause a problem
through a rigorous process of testing, they have no real control over mistakes made by the
user during data entry. Nor can they guarantee that any data files used by the program
will be free of errors and in the correct format.

 Validation is a form of self protection. It is the checking to verify that appropriate
values have been entered for textbox or any control .

Validation may include :-

1) Making sure data is numeric or text depending on application.

2) Checking for specific values.

3) Checking for range of values

4) Making sure required items are entered.

93

Write a program to access data source through ADO.NET.

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.OleDb;

public partial class marksheet : System.Web.UI.Page
{

OleDbConnection con = new OleDbConnection("Provider=MSDAORA; User Id=result;
Password=college");

OleDbCommand cmd = new OleDbCommand();
OleDbCommand cmd1 = new OleDbCommand();
OleDbDataReader dr,dr1;
protected void Page_Load(object sender, EventArgs e)
{

cmd.Connection = con;
cmd1.Connection = con;

con.Open();

string s1 = Session["rollno"].ToString();
string s2 = Session["sem"].ToString();
string s3 = Session["branch"].ToString();

cmd.CommandText = "select * from DATABASE where ROLLNO='"+s1+"' and
SEM='"+s2+"' and BRANCH='"+s3+"' ";

dr = cmd.ExecuteReader();
if (dr.Read())

{

string d1 = dr.GetValue(0).ToString();
string d2 = dr.GetValue(1).ToString();
string d3 = dr.GetValue(2).ToString();
string d4 = dr.GetValue(3).ToString();
string d5 = dr.GetValue(4).ToString();
string d6 = dr.GetValue(5).ToString();
string d7 = dr.GetValue(6).ToString();
string d8 = dr.GetValue(7).ToString();

94

TextBox1.Text = d1;
TextBox2.Text = d2;
TextBox3.Text = d3;
Label16.Text = d4;
Label17.Text = d5;
Label18.Text = d6;
Label19.Text = d7;
Label20.Text = d8;
dr.Dispose();

}
cmd1.CommandText = "select * from SEM_BRANCH_SUB where sem='"+s2+"' and
branch='"+s3+"' ";

OleDbDataReader dr1 = cmd1.ExecuteReader();
if (dr1.Read())
{
string d9 = dr1.GetValue(2).ToString();
string d10 = dr1.GetValue(3).ToString();

string d11 = dr1.GetValue(4).ToString();
string d12 = dr1.GetValue(5).ToString();
string d13 = dr1.GetValue(6).ToString();

Label10.Text = d9;
Label11.Text = d10;

Label12.Text = d11;
Label13.Text = d12;
Label14.Text = d13;

}

}
}

Database programs with ASP.NET and ADO.NET Create a Login Module which adds Username
and Password in the database. Username in the database should be a primary key.

CODE:

LoginModule.aspx

using System;

using System.Collections.Generic;

using System.Linq;

95

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class LoginModule : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

}

protected void btnSignUp_Click(object sender, EventArgs e)

{

SqlDataSource1.InsertParameters["Username"].DefaultValue = txtUserName.Text;

SqlDataSource1.InsertParameters["Password"].DefaultValue = txtPassword.Text;

SqlDataSource1.Insert();

lblResult.Text = "User Added";

}

}

Assignment: 6

1. Create a web application to insert 3 records inside the SQL database table having
following fields(DeptId, DeptName, EmpName, Salary). Update the salary for any one
employee and increment it to 15% of the present salary. Perform delete operation on 1
row of the database table.

2. Create the table with the given fields. FIELD NAME DATA TYPE (EmpNo number
EmpName varchar EmpSal number EmpJob varchar EmpDeptNo number)For the given
table design a web page to display the employee information from table to grid control.

3. Create the table with the given fields. FIELD NAME DATA TYPE SRollno int SName
string SAddress string SFees int For the given table design a web page to display the
employee information from table to grid control.

4. Write a program to connect to the master database in SQL Server, in the Page_Load
event. When the connection is established, the message “Connection has been
established” should be displayed in a label in the form.

96

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Section III: RIT

T.Y.B.B.A.(C.A.) Sem-VI (CBCS 2019 Pattern)

Subject Code: CA-601

Subject: Recent Trends in IT Practical Assignments

Artificial Intelligence Practical Assignments: (Python / R programming)

1. Write a program to implement Breadth First Search Algorithm.

2. Write a program to implement Depth First Search Algorithm.

3. Write a program to implement water jug problem.

4. Write a program to implement Tower of Hanoi problem.

Data Mining Practical Assignments:

1. Build a classification model and usage of weka to use a Decision Tree algorithm to

classify data from the “weather.arff” file. Perform initial preprocessing and create a

version of the initial dataset in which all numeric attributes should be converted to

categorical data.

2. Use database “labor.arff” Apply Linear Regression and find out total number of

instances. (using weka / R).

3. Use Naïve Bayes algorithm to diabetes data from the “diabetes.arff” file. Perform initial

preprocessing and create a version of the initial data set in which the ID field should be

removed and the "Type" attribute should be converted to categorical data.

(using weka /R)

4. Build a classification model and usage of WEKA to implement Naïve Bayes algorithm to

classify whether data from the “Iris.arff” file on attribute plat growth and leaves. Perform

initial pre-processing and create a version of the initial dataset in which all numeric

attributes should be converted to categorical data.

5. Use Zero R classification algorithm to supermarket data from the “supermarket.arff” file.

Perform initial preprocessing and analyze confusion matrix. (using weka /R)

6. Use the simple K-means algorithm for database “bank.arff” with the default settings and

find out final cluster centroids.

7. Use Apriori algorithm to vote data of a transaction and identify all frequent k-item set

and min support is 40% from the “vote.arff” file. Perform initial preprocessing and find

all the frequent item sets. (using weka /R).

8. Use Hierarchical Clustering classificational algorithm to tic-tac-toe data from the “tic-tac-

toe.arff” file. Perform initial pre-processing and create a version of the initial data set in

which the ID field should be removed and the "class" attribute should be converted to

categorical data. (Using weka /R).

9. Build a classification model and usage of weka to use a Decision Tree algorithm to

classify whether data from the “labour.arff” file. Perform initial preprocessing and create

a version of the initial dataset in which all numeric attributes should be converted to

categorical data.

10. Use the FP Growth algorithm and Apriori algorithm for database “supermarket.arff”,

with the default settings and find out which algorithm generates maximum rules.

Spark Practical Assignments:

1. Write a spark program to apply the map function and pass the expression required to

perform.

2. Write a spark program to apply filter function and pass the expression required to

perform.

3. Write a spark program to apply intersection() function to return the intersection of the

elements.

4. Write a spark program to apply reduceByKey() function to aggregate the values.

5. Write a spark program to demonstrate the different ways to create a DataFrame.

6. Write a spark program to add or update column on DataFrame.

7. Write a spark program to remove distinct on multiple selected columns.

Section IV: Soft Skill

T.Y.B.B.A.(C.A.) Semester-VI

Subject: (CA – 607) Soft Skill Practical Assignments

1 Practice on Oral and spoken communication skill & testing –

voice & accent, voice clarity, voice modulation & word

stress etc.

2 Study of different pictorial expression of non-verbal

communication and its analysis

3 Development etiquettes and manners

4 Conduct demo session on interview.

5 Prepare a presentation and Deliver it on specific topic.

6 Prepare your own resume.

7 Take a Group Discussion on some topic like Education,

Social media , Online System etc.

8 Team Building Practices through group exercises, team task

/ role play.

	Assignment Completion Sheet
	1. public static int MIN_PRIORITY
	2. public static int NORM_PRIORITY
	3. public static int MAX_PRIORITY
	Get and Set methods in Thread priority
	1. public final int getPriority()
	2. public final void setPriority(int newPriority)

	Important methods:

	ServerSocket class
	Important methods

	How to develop Socket application:
	Servlet application Directory structure
	For Example: Accepting name from user.
	Save this file as “index.html”
	Note: In form tag the action parameter should be the Servlet “.class” file name.
	3. The WEB-INF folder is a web information folder which holds the information about your web application such as the .class file and deployment descriptor i.e. web.xml
	4. Now write the java program and save it in classes folder. Compile it and a “.class file” will be generated.
	2. Scripting Elements:
	Hibernate Framework
	ORM Tool
	What is JPA?
	Elements of Hibernate Architecture
	SessionFactory
	Session
	Transaction
	ConnectionProvider
	TransactionFactory

	First Hibernate Example without IDE
	1) Create the Persistent class
	Employee.java
	employee.hbm.xml

	3) Create the Configuration file
	hibernate.cfg.xml

	4) Create the class that retrieves or stores the object
	5) Load the jar file
	How to run the first hibernate application without IDE

	Hibernate Example using XML in Eclipse
	1) Create the java project
	2) Add jar files for hibernate
	3) Create the Persistent class
	Employee.java

	4) Create the mapping file for Persistent class
	employee.hbm.xml

	5) Create the Configuration file
	hibernate.cfg.xml

	6) Create the class that retrieves or stores the persistent object

